DSSTAtmosphericDrag.java
/* Copyright 2002-2013 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.forces;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math3.util.FastMath;
import org.orekit.errors.OrekitException;
import org.orekit.forces.drag.Atmosphere;
import org.orekit.frames.Frame;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.EventDetector;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.Constants;
/** Atmospheric drag contribution to the
* {@link org.orekit.propagation.semianalytical.dsst.DSSTPropagator DSSTPropagator}.
* <p>
* The drag acceleration is computed as follows:<br>
* γ = (1/2 ρ C<sub>D</sub> A<sub>Ref</sub> / m) * |v<sub>atm</sub> - v<sub>sat</sub>| *
* (v<sub>atm</sub> - v<sub>sat</sub>)
* </p>
*
* @author Pascal Parraud
*/
public class DSSTAtmosphericDrag extends AbstractGaussianContribution {
/** Threshold for the choice of the Gauss quadrature order. */
private static final double GAUSS_THRESHOLD = 6.0e-10;
/** Upper limit for atmospheric drag (m) . */
private static final double ATMOSPHERE_ALTITUDE_MAX = 1000000.;
/** Atmospheric model. */
private final Atmosphere atmosphere;
/** Cross sectionnal area of satellite. */
private final double area;
/** Coefficient 1/2 * C<sub>D</sub> * A<sub>Ref</sub>. */
private final double kRef;
/** Critical distance from the center of the central body for entering/leaving the atmosphere. */
private final double rbar;
/** Simple constructor.
* @param atmosphere atmospheric model
* @param cd drag coefficient
* @param area cross sectionnal area of satellite
*/
public DSSTAtmosphericDrag(final Atmosphere atmosphere, final double cd, final double area) {
super(GAUSS_THRESHOLD);
this.atmosphere = atmosphere;
this.area = area;
this.kRef = 0.5 * cd * area;
this.rbar = ATMOSPHERE_ALTITUDE_MAX + Constants.WGS84_EARTH_EQUATORIAL_RADIUS;
}
/** Get the atmospheric model.
* @return atmosphere model
*/
public Atmosphere getAtmosphere() {
return atmosphere;
}
/** Get the cross sectional area of satellite.
* @return cross sectional area (m<sup>2</sup>)
*/
public double getArea() {
return area;
}
/** Get the drag coefficient.
* @return drag coefficient
*/
public double getCd() {
return 2 * kRef / area;
}
/** Get the critical distance.
* <p>
* The critical distance from the center of the central body aims at
* defining the atmosphere entry/exit.
* </p>
* @return the critical distance from the center of the central body (m)
*/
public double getRbar() {
return rbar;
}
/** {@inheritDoc} */
public double[] getShortPeriodicVariations(final AbsoluteDate date, final double[] meanElements)
throws OrekitException {
// TODO: not implemented yet, Short Periodic Variations are set to null
return new double[] {0., 0., 0., 0., 0., 0.};
}
/** {@inheritDoc} */
public EventDetector[] getEventsDetectors() {
return null;
}
/** {@inheritDoc} */
protected Vector3D getAcceleration(final SpacecraftState state,
final Vector3D position, final Vector3D velocity)
throws OrekitException {
final AbsoluteDate date = state.getDate();
final Frame frame = state.getFrame();
// compute atmospheric density (assuming it doesn't depend on the date)
final double rho = atmosphere.getDensity(date, position, frame);
// compute atmospheric velocity (assuming it doesn't depend on the date)
final Vector3D vAtm = atmosphere.getVelocity(date, position, frame);
// compute relative velocity
final Vector3D vRel = vAtm.subtract(velocity);
// compute compound drag coefficient
final double bc = kRef / state.getMass();
// compute drag acceleration
return new Vector3D(bc * rho * vRel.getNorm(), vRel);
}
/** {@inheritDoc} */
protected double[] getLLimits(final SpacecraftState state) throws OrekitException {
final double perigee = a * (1. - ecc);
// Trajectory entirely out of the atmosphere
if (perigee > rbar) {
return new double[2];
}
final double apogee = a * (1. + ecc);
// Trajectory entirely within of the atmosphere
if (apogee < rbar) {
return new double[] {-FastMath.PI, FastMath.PI};
}
// Else, trajectory partialy within of the atmosphere
final double fb = FastMath.acos(((a * (1. - ecc * ecc) / rbar) - 1.) / ecc);
final double wW = FastMath.atan2(h, k);
return new double[] {wW - fb, wW + fb};
}
}