EquinoctialOrbit.java
- /* Copyright 2002-2013 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.orbits;
- import java.util.Collection;
- import org.apache.commons.math3.analysis.interpolation.HermiteInterpolator;
- import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
- import org.apache.commons.math3.util.FastMath;
- import org.apache.commons.math3.util.MathUtils;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.frames.Frame;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.PVCoordinates;
- /**
- * This class handles equinoctial orbital parameters, which can support both
- * circular and equatorial orbits.
- * <p>
- * The parameters used internally are the equinoctial elements which can be
- * related to keplerian elements as follows:
- * <pre>
- * a
- * ex = e cos(ω + Ω)
- * ey = e sin(ω + Ω)
- * hx = tan(i/2) cos(Ω)
- * hy = tan(i/2) sin(Ω)
- * lv = v + ω + Ω
- * </pre>
- * where ω stands for the Perigee Argument and Ω stands for the
- * Right Ascension of the Ascending Node.
- * </p>
- * <p>
- * The conversion equations from and to keplerian elements given above hold only
- * when both sides are unambiguously defined, i.e. when orbit is neither equatorial
- * nor circular. When orbit is either equatorial or circular, the equinoctial
- * parameters are still unambiguously defined whereas some keplerian elements
- * (more precisely ω and Ω) become ambiguous. For this reason, equinoctial
- * parameters are the recommended way to represent orbits.
- * </p>
- * <p>
- * The instance <code>EquinoctialOrbit</code> is guaranteed to be immutable.
- * </p>
- * @see Orbit
- * @see KeplerianOrbit
- * @see CircularOrbit
- * @see CartesianOrbit
- * @author Mathieu Roméro
- * @author Luc Maisonobe
- * @author Guylaine Prat
- * @author Fabien Maussion
- * @author Véronique Pommier-Maurussane
- */
- public class EquinoctialOrbit extends Orbit {
- /** Identifier for mean longitude argument.
- * @deprecated as of 6.0 replaced by {@link PositionAngle}
- */
- @Deprecated
- public static final int MEAN_LATITUDE_ARGUMENT = 0;
- /** Identifier for eccentric longitude argument.
- * @deprecated as of 6.0 replaced by {@link PositionAngle}
- */
- @Deprecated
- public static final int ECCENTRIC_LATITUDE_ARGUMENT = 1;
- /** Identifier for true longitude argument.
- * @deprecated as of 6.0 replaced by {@link PositionAngle}
- */
- @Deprecated
- public static final int TRUE_LATITUDE_ARGUMENT = 2;
- /** Serializable UID. */
- private static final long serialVersionUID = -2000712440570076839L;
- /** Semi-major axis (m). */
- private final double a;
- /** First component of the eccentricity vector. */
- private final double ex;
- /** Second component of the eccentricity vector. */
- private final double ey;
- /** First component of the inclination vector. */
- private final double hx;
- /** Second component of the inclination vector. */
- private final double hy;
- /** True longitude argument (rad). */
- private final double lv;
- /** Creates a new instance.
- * @param a semi-major axis (m)
- * @param ex e cos(ω + Ω), first component of eccentricity vector
- * @param ey e sin(ω + Ω), second component of eccentricity vector
- * @param hx tan(i/2) cos(Ω), first component of inclination vector
- * @param hy tan(i/2) sin(Ω), second component of inclination vector
- * @param l (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)
- * @param type type of longitude argument, must be one of {@link #MEAN_LATITUDE_ARGUMENT},
- * {@link #ECCENTRIC_LATITUDE_ARGUMENT} or {@link #TRUE_LATITUDE_ARGUMENT}
- * @param frame the frame in which the parameters are defined
- * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
- * @param date date of the orbital parameters
- * @param mu central attraction coefficient (m<sup>3</sup>/s<sup>2</sup>)
- * @exception IllegalArgumentException if eccentricity is equal to 1 or larger or
- * if frame is not a {@link Frame#isPseudoInertial pseudo-inertial frame}
- */
- public EquinoctialOrbit(final double a, final double ex, final double ey,
- final double hx, final double hy,
- final double l, final PositionAngle type,
- final Frame frame, final AbsoluteDate date, final double mu)
- throws IllegalArgumentException {
- super(frame, date, mu);
- if (ex * ex + ey * ey >= 1.0) {
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.HYPERBOLIC_ORBIT_NOT_HANDLED_AS, getClass().getName());
- }
- this.a = a;
- this.ex = ex;
- this.ey = ey;
- this.hx = hx;
- this.hy = hy;
- switch (type) {
- case MEAN :
- this.lv = eccentricToTrue(meanToEccentric(l));
- break;
- case ECCENTRIC :
- this.lv = eccentricToTrue(l);
- break;
- case TRUE :
- this.lv = l;
- break;
- default :
- throw OrekitException.createInternalError(null);
- }
- }
- /** Creates a new instance.
- * @param a semi-major axis (m)
- * @param ex e cos(ω + Ω), first component of eccentricity vector
- * @param ey e sin(ω + Ω), second component of eccentricity vector
- * @param hx tan(i/2) cos(Ω), first component of inclination vector
- * @param hy tan(i/2) sin(Ω), second component of inclination vector
- * @param l (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)
- * @param type type of longitude argument, must be one of {@link #MEAN_LATITUDE_ARGUMENT},
- * {@link #ECCENTRIC_LATITUDE_ARGUMENT} or {@link #TRUE_LATITUDE_ARGUMENT}
- * @param frame the frame in which the parameters are defined
- * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
- * @param date date of the orbital parameters
- * @param mu central attraction coefficient (m<sup>3</sup>/s<sup>2</sup>)
- * @exception IllegalArgumentException if eccentricity is equal to 1 or larger or
- * if the longitude argument type is not one of {@link #MEAN_LATITUDE_ARGUMENT},
- * {@link #ECCENTRIC_LATITUDE_ARGUMENT} or {@link #TRUE_LATITUDE_ARGUMENT} or
- * if frame is not a {@link Frame#isPseudoInertial pseudo-inertial frame}
- * @see #MEAN_LATITUDE_ARGUMENT
- * @see #ECCENTRIC_LATITUDE_ARGUMENT
- * @see #TRUE_LATITUDE_ARGUMENT
- * @deprecated as of 6.0 replaced by {@link #EquinoctialOrbit(double, double, double,
- * double, double, double, PositionAngle, Frame, AbsoluteDate, double)}
- */
- @Deprecated
- public EquinoctialOrbit(final double a, final double ex, final double ey,
- final double hx, final double hy,
- final double l, final int type,
- final Frame frame, final AbsoluteDate date, final double mu)
- throws IllegalArgumentException {
- super(frame, date, mu);
- if (ex * ex + ey * ey >= 1.0) {
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.HYPERBOLIC_ORBIT_NOT_HANDLED_AS, getClass().getName());
- }
- this.a = a;
- this.ex = ex;
- this.ey = ey;
- this.hx = hx;
- this.hy = hy;
- switch (type) {
- case MEAN_LATITUDE_ARGUMENT :
- this.lv = eccentricToTrue(meanToEccentric(l));
- break;
- case ECCENTRIC_LATITUDE_ARGUMENT :
- this.lv = eccentricToTrue(l);
- break;
- case TRUE_LATITUDE_ARGUMENT :
- this.lv = l;
- break;
- default :
- this.lv = Double.NaN;
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.ANGLE_TYPE_NOT_SUPPORTED,
- "MEAN_LATITUDE_ARGUMENT", "ECCENTRIC_LATITUDE_ARGUMENT",
- "TRUE_LATITUDE_ARGUMENT");
- }
- }
- /** Constructor from cartesian parameters.
- * @param pvCoordinates the position end velocity
- * @param frame the frame in which are defined the {@link PVCoordinates}
- * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
- * @param date date of the orbital parameters
- * @param mu central attraction coefficient (m<sup>3</sup>/s<sup>2</sup>)
- * @exception IllegalArgumentException if eccentricity is equal to 1 or larger or
- * if frame is not a {@link Frame#isPseudoInertial pseudo-inertial frame}
- */
- public EquinoctialOrbit(final PVCoordinates pvCoordinates, final Frame frame,
- final AbsoluteDate date, final double mu)
- throws IllegalArgumentException {
- super(pvCoordinates, frame, date, mu);
- // compute semi-major axis
- final Vector3D pvP = pvCoordinates.getPosition();
- final Vector3D pvV = pvCoordinates.getVelocity();
- final double r = pvP.getNorm();
- final double V2 = pvV.getNormSq();
- final double rV2OnMu = r * V2 / mu;
- if (rV2OnMu > 2) {
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.HYPERBOLIC_ORBIT_NOT_HANDLED_AS, getClass().getName());
- }
- // compute inclination vector
- final Vector3D w = pvCoordinates.getMomentum().normalize();
- final double d = 1.0 / (1 + w.getZ());
- hx = -d * w.getY();
- hy = d * w.getX();
- // compute true longitude argument
- final double cLv = (pvP.getX() - d * pvP.getZ() * w.getX()) / r;
- final double sLv = (pvP.getY() - d * pvP.getZ() * w.getY()) / r;
- lv = FastMath.atan2(sLv, cLv);
- // compute semi-major axis
- a = r / (2 - rV2OnMu);
- // compute eccentricity vector
- final double eSE = Vector3D.dotProduct(pvP, pvV) / FastMath.sqrt(mu * a);
- final double eCE = rV2OnMu - 1;
- final double e2 = eCE * eCE + eSE * eSE;
- final double f = eCE - e2;
- final double g = FastMath.sqrt(1 - e2) * eSE;
- ex = a * (f * cLv + g * sLv) / r;
- ey = a * (f * sLv - g * cLv) / r;
- }
- /** Constructor from any kind of orbital parameters.
- * @param op orbital parameters to copy
- */
- public EquinoctialOrbit(final Orbit op) {
- super(op.getFrame(), op.getDate(), op.getMu());
- a = op.getA();
- ex = op.getEquinoctialEx();
- ey = op.getEquinoctialEy();
- hx = op.getHx();
- hy = op.getHy();
- lv = op.getLv();
- }
- /** {@inheritDoc} */
- public OrbitType getType() {
- return OrbitType.EQUINOCTIAL;
- }
- /** {@inheritDoc} */
- public double getA() {
- return a;
- }
- /** {@inheritDoc} */
- public double getEquinoctialEx() {
- return ex;
- }
- /** {@inheritDoc} */
- public double getEquinoctialEy() {
- return ey;
- }
- /** {@inheritDoc} */
- public double getHx() {
- return hx;
- }
- /** {@inheritDoc} */
- public double getHy() {
- return hy;
- }
- /** Get the longitude argument.
- * @param type type of the angle
- * @return longitude argument (rad)
- */
- public double getL(final PositionAngle type) {
- return (type == PositionAngle.MEAN) ? getLM() :
- ((type == PositionAngle.ECCENTRIC) ? getLE() :
- getLv());
- }
- /** {@inheritDoc} */
- public double getLv() {
- return lv;
- }
- /** {@inheritDoc} */
- public double getLE() {
- final double epsilon = FastMath.sqrt(1 - ex * ex - ey * ey);
- final double cosLv = FastMath.cos(lv);
- final double sinLv = FastMath.sin(lv);
- final double num = ey * cosLv - ex * sinLv;
- final double den = epsilon + 1 + ex * cosLv + ey * sinLv;
- return lv + 2 * FastMath.atan(num / den);
- }
- /** Computes the true longitude argument from the eccentric longitude argument.
- * @param lE = E + ω + Ω eccentric longitude argument (rad)
- * @return the true longitude argument
- */
- private double eccentricToTrue(final double lE) {
- final double epsilon = FastMath.sqrt(1 - ex * ex - ey * ey);
- final double cosLE = FastMath.cos(lE);
- final double sinLE = FastMath.sin(lE);
- final double num = ex * sinLE - ey * cosLE;
- final double den = epsilon + 1 - ex * cosLE - ey * sinLE;
- return lE + 2 * FastMath.atan(num / den);
- }
- /** {@inheritDoc} */
- public double getLM() {
- final double lE = getLE();
- return lE - ex * FastMath.sin(lE) + ey * FastMath.cos(lE);
- }
- /** Computes the eccentric longitude argument from the mean longitude argument.
- * @param lM = M + ω + Ω mean longitude argument (rad)
- * @return the eccentric longitude argument
- */
- private double meanToEccentric(final double lM) {
- // Generalization of Kepler equation to equinoctial parameters
- // with lE = PA + RAAN + E and
- // lM = PA + RAAN + M = lE - ex.sin(lE) + ey.cos(lE)
- double lE = lM;
- double shift = 0.0;
- double lEmlM = 0.0;
- double cosLE = FastMath.cos(lE);
- double sinLE = FastMath.sin(lE);
- int iter = 0;
- do {
- final double f2 = ex * sinLE - ey * cosLE;
- final double f1 = 1.0 - ex * cosLE - ey * sinLE;
- final double f0 = lEmlM - f2;
- final double f12 = 2.0 * f1;
- shift = f0 * f12 / (f1 * f12 - f0 * f2);
- lEmlM -= shift;
- lE = lM + lEmlM;
- cosLE = FastMath.cos(lE);
- sinLE = FastMath.sin(lE);
- } while ((++iter < 50) && (FastMath.abs(shift) > 1.0e-12));
- return lE;
- }
- /** {@inheritDoc} */
- public double getE() {
- return FastMath.sqrt(ex * ex + ey * ey);
- }
- /** {@inheritDoc} */
- public double getI() {
- return 2 * FastMath.atan(FastMath.sqrt(hx * hx + hy * hy));
- }
- /** {@inheritDoc} */
- protected PVCoordinates initPVCoordinates() {
- // get equinoctial parameters
- final double lE = getLE();
- // inclination-related intermediate parameters
- final double hx2 = hx * hx;
- final double hy2 = hy * hy;
- final double factH = 1. / (1 + hx2 + hy2);
- // reference axes defining the orbital plane
- final double ux = (1 + hx2 - hy2) * factH;
- final double uy = 2 * hx * hy * factH;
- final double uz = -2 * hy * factH;
- final double vx = uy;
- final double vy = (1 - hx2 + hy2) * factH;
- final double vz = 2 * hx * factH;
- // eccentricity-related intermediate parameters
- final double exey = ex * ey;
- final double ex2 = ex * ex;
- final double ey2 = ey * ey;
- final double e2 = ex2 + ey2;
- final double eta = 1 + FastMath.sqrt(1 - e2);
- final double beta = 1. / eta;
- // eccentric longitude argument
- final double cLe = FastMath.cos(lE);
- final double sLe = FastMath.sin(lE);
- final double exCeyS = ex * cLe + ey * sLe;
- // coordinates of position and velocity in the orbital plane
- final double x = a * ((1 - beta * ey2) * cLe + beta * exey * sLe - ex);
- final double y = a * ((1 - beta * ex2) * sLe + beta * exey * cLe - ey);
- final double factor = FastMath.sqrt(getMu() / a) / (1 - exCeyS);
- final double xdot = factor * (-sLe + beta * ey * exCeyS);
- final double ydot = factor * ( cLe - beta * ex * exCeyS);
- final Vector3D position =
- new Vector3D(x * ux + y * vx, x * uy + y * vy, x * uz + y * vz);
- final Vector3D velocity =
- new Vector3D(xdot * ux + ydot * vx, xdot * uy + ydot * vy, xdot * uz + ydot * vz);
- return new PVCoordinates(position, velocity);
- }
- /** {@inheritDoc} */
- public EquinoctialOrbit shiftedBy(final double dt) {
- return new EquinoctialOrbit(a, ex, ey, hx, hy,
- getLM() + getKeplerianMeanMotion() * dt,
- PositionAngle.MEAN, getFrame(),
- getDate().shiftedBy(dt), getMu());
- }
- /** {@inheritDoc}
- * <p>
- * The interpolated instance is created by polynomial Hermite interpolation
- * on equinoctial elements, without derivatives (which means the interpolation
- * falls back to Lagrange interpolation only).
- * </p>
- * <p>
- * As this implementation of interpolation is polynomial, it should be used only
- * with small samples (about 10-20 points) in order to avoid <a
- * href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a>
- * and numerical problems (including NaN appearing).
- * </p>
- * <p>
- * If orbit interpolation on large samples is needed, using the {@link
- * org.orekit.propagation.analytical.Ephemeris} class is a better way than using this
- * low-level interpolation. The Ephemeris class automatically handles selection of
- * a neighboring sub-sample with a predefined number of point from a large global sample
- * in a thread-safe way.
- * </p>
- */
- public EquinoctialOrbit interpolate(final AbsoluteDate date, final Collection<Orbit> sample) {
- // set up an interpolator
- final HermiteInterpolator interpolator = new HermiteInterpolator();
- // add sample points
- AbsoluteDate previousDate = null;
- double previousLm = Double.NaN;
- for (final Orbit orbit : sample) {
- final EquinoctialOrbit equi = (EquinoctialOrbit) OrbitType.EQUINOCTIAL.convertType(orbit);
- final double continuousLm;
- if (previousDate == null) {
- continuousLm = equi.getLM();
- } else {
- final double dt = equi.getDate().durationFrom(previousDate);
- final double keplerLm = previousLm + equi.getKeplerianMeanMotion() * dt;
- continuousLm = MathUtils.normalizeAngle(equi.getLM(), keplerLm);
- }
- previousDate = equi.getDate();
- previousLm = continuousLm;
- interpolator.addSamplePoint(equi.getDate().durationFrom(date),
- new double[] {
- equi.getA(),
- equi.getEquinoctialEx(),
- equi.getEquinoctialEy(),
- equi.getHx(),
- equi.getHy(),
- continuousLm
- });
- }
- // interpolate
- final double[] interpolated = interpolator.value(0);
- // build a new interpolated instance
- return new EquinoctialOrbit(interpolated[0], interpolated[1], interpolated[2],
- interpolated[3], interpolated[4], interpolated[5],
- PositionAngle.MEAN, getFrame(), date, getMu());
- }
- /** {@inheritDoc} */
- protected double[][] computeJacobianMeanWrtCartesian() {
- final double[][] jacobian = new double[6][6];
- // compute various intermediate parameters
- final Vector3D position = getPVCoordinates().getPosition();
- final Vector3D velocity = getPVCoordinates().getVelocity();
- final double r2 = position.getNormSq();
- final double r = FastMath.sqrt(r2);
- final double r3 = r * r2;
- final double mu = getMu();
- final double sqrtMuA = FastMath.sqrt(a * mu);
- final double a2 = a * a;
- final double e2 = ex * ex + ey * ey;
- final double oMe2 = 1 - e2;
- final double epsilon = FastMath.sqrt(oMe2);
- final double beta = 1 / (1 + epsilon);
- final double ratio = epsilon * beta;
- final double hx2 = hx * hx;
- final double hy2 = hy * hy;
- final double hxhy = hx * hy;
- // precomputing equinoctial frame unit vectors (f,g,w)
- final Vector3D f = new Vector3D(1 - hy2 + hx2, 2 * hxhy, -2 * hy).normalize();
- final Vector3D g = new Vector3D(2 * hxhy, 1 + hy2 - hx2, 2 * hx).normalize();
- final Vector3D w = Vector3D.crossProduct(position, velocity).normalize();
- // coordinates of the spacecraft in the equinoctial frame
- final double x = Vector3D.dotProduct(position, f);
- final double y = Vector3D.dotProduct(position, g);
- final double xDot = Vector3D.dotProduct(velocity, f);
- final double yDot = Vector3D.dotProduct(velocity, g);
- // drDot / dEx = dXDot / dEx * f + dYDot / dEx * g
- final double c1 = a / (sqrtMuA * epsilon);
- final double c2 = a * sqrtMuA * beta / r3;
- final double c3 = sqrtMuA / (r3 * epsilon);
- final Vector3D drDotSdEx = new Vector3D( c1 * xDot * yDot - c2 * ey * x - c3 * x * y, f,
- -c1 * xDot * xDot - c2 * ey * y + c3 * x * x, g);
- // drDot / dEy = dXDot / dEy * f + dYDot / dEy * g
- final Vector3D drDotSdEy = new Vector3D( c1 * yDot * yDot + c2 * ex * x - c3 * y * y, f,
- -c1 * xDot * yDot + c2 * ex * y + c3 * x * y, g);
- // da
- final Vector3D vectorAR = new Vector3D(2 * a2 / r3, position);
- final Vector3D vectorARDot = new Vector3D(2 * a2 / mu, velocity);
- fillHalfRow(1, vectorAR, jacobian[0], 0);
- fillHalfRow(1, vectorARDot, jacobian[0], 3);
- // dEx
- final double d1 = -a * ratio / r3;
- final double d2 = (hy * xDot - hx * yDot) / (sqrtMuA * epsilon);
- final double d3 = (hx * y - hy * x) / sqrtMuA;
- final Vector3D vectorExRDot =
- new Vector3D((2 * x * yDot - xDot * y) / mu, g, -y * yDot / mu, f, -ey * d3 / epsilon, w);
- fillHalfRow(ex * d1, position, -ey * d2, w, epsilon / sqrtMuA, drDotSdEy, jacobian[1], 0);
- fillHalfRow(1, vectorExRDot, jacobian[1], 3);
- // dEy
- final Vector3D vectorEyRDot =
- new Vector3D((2 * xDot * y - x * yDot) / mu, f, -x * xDot / mu, g, ex * d3 / epsilon, w);
- fillHalfRow(ey * d1, position, ex * d2, w, -epsilon / sqrtMuA, drDotSdEx, jacobian[2], 0);
- fillHalfRow(1, vectorEyRDot, jacobian[2], 3);
- // dHx
- final double h = (1 + hx2 + hy2) / (2 * sqrtMuA * epsilon);
- fillHalfRow(-h * xDot, w, jacobian[3], 0);
- fillHalfRow( h * x, w, jacobian[3], 3);
- // dHy
- fillHalfRow(-h * yDot, w, jacobian[4], 0);
- fillHalfRow( h * y, w, jacobian[4], 3);
- // dLambdaM
- final double l = -ratio / sqrtMuA;
- fillHalfRow(-1 / sqrtMuA, velocity, d2, w, l * ex, drDotSdEx, l * ey, drDotSdEy, jacobian[5], 0);
- fillHalfRow(-2 / sqrtMuA, position, ex * beta, vectorEyRDot, -ey * beta, vectorExRDot, d3, w, jacobian[5], 3);
- return jacobian;
- }
- /** {@inheritDoc} */
- protected double[][] computeJacobianEccentricWrtCartesian() {
- // start by computing the Jacobian with mean angle
- final double[][] jacobian = computeJacobianMeanWrtCartesian();
- // Differentiating the Kepler equation lM = lE - ex sin lE + ey cos lE leads to:
- // dlM = (1 - ex cos lE - ey sin lE) dE - sin lE dex + cos lE dey
- // which is inverted and rewritten as:
- // dlE = a/r dlM + sin lE a/r dex - cos lE a/r dey
- final double le = getLE();
- final double cosLe = FastMath.cos(le);
- final double sinLe = FastMath.sin(le);
- final double aOr = 1 / (1 - ex * cosLe - ey * sinLe);
- // update longitude row
- final double[] rowEx = jacobian[1];
- final double[] rowEy = jacobian[2];
- final double[] rowL = jacobian[5];
- for (int j = 0; j < 6; ++j) {
- rowL[j] = aOr * (rowL[j] + sinLe * rowEx[j] - cosLe * rowEy[j]);
- }
- return jacobian;
- }
- /** {@inheritDoc} */
- protected double[][] computeJacobianTrueWrtCartesian() {
- // start by computing the Jacobian with eccentric angle
- final double[][] jacobian = computeJacobianEccentricWrtCartesian();
- // Differentiating the eccentric longitude equation
- // tan((lV - lE)/2) = [ex sin lE - ey cos lE] / [sqrt(1-ex^2-ey^2) + 1 - ex cos lE - ey sin lE]
- // leads to
- // cT (dlV - dlE) = cE dlE + cX dex + cY dey
- // with
- // cT = [d^2 + (ex sin lE - ey cos lE)^2] / 2
- // d = 1 + sqrt(1-ex^2-ey^2) - ex cos lE - ey sin lE
- // cE = (ex cos lE + ey sin lE) (sqrt(1-ex^2-ey^2) + 1) - ex^2 - ey^2
- // cX = sin lE (sqrt(1-ex^2-ey^2) + 1) - ey + ex (ex sin lE - ey cos lE) / sqrt(1-ex^2-ey^2)
- // cY = -cos lE (sqrt(1-ex^2-ey^2) + 1) + ex + ey (ex sin lE - ey cos lE) / sqrt(1-ex^2-ey^2)
- // which can be solved to find the differential of the true longitude
- // dlV = (cT + cE) / cT dlE + cX / cT deX + cY / cT deX
- final double le = getLE();
- final double cosLe = FastMath.cos(le);
- final double sinLe = FastMath.sin(le);
- final double eSinE = ex * sinLe - ey * cosLe;
- final double ecosE = ex * cosLe + ey * sinLe;
- final double e2 = ex * ex + ey * ey;
- final double epsilon = FastMath.sqrt(1 - e2);
- final double onePeps = 1 + epsilon;
- final double d = onePeps - ecosE;
- final double cT = (d * d + eSinE * eSinE) / 2;
- final double cE = ecosE * onePeps - e2;
- final double cX = ex * eSinE / epsilon - ey + sinLe * onePeps;
- final double cY = ey * eSinE / epsilon + ex - cosLe * onePeps;
- final double factorLe = (cT + cE) / cT;
- final double factorEx = cX / cT;
- final double factorEy = cY / cT;
- // update longitude row
- final double[] rowEx = jacobian[1];
- final double[] rowEy = jacobian[2];
- final double[] rowL = jacobian[5];
- for (int j = 0; j < 6; ++j) {
- rowL[j] = factorLe * rowL[j] + factorEx * rowEx[j] + factorEy * rowEy[j];
- }
- return jacobian;
- }
- /** {@inheritDoc} */
- public void addKeplerContribution(final PositionAngle type, final double gm,
- final double[] pDot) {
- final double oMe2;
- final double ksi;
- final double n = FastMath.sqrt(gm / a) / a;
- switch (type) {
- case MEAN :
- pDot[5] += n;
- break;
- case ECCENTRIC :
- oMe2 = 1 - ex * ex - ey * ey;
- ksi = 1 + ex * FastMath.cos(lv) + ey * FastMath.sin(lv);
- pDot[5] += n * ksi / oMe2;
- break;
- case TRUE :
- oMe2 = 1 - ex * ex - ey * ey;
- ksi = 1 + ex * FastMath.cos(lv) + ey * FastMath.sin(lv);
- pDot[5] += n * ksi * ksi / (oMe2 * FastMath.sqrt(oMe2));
- break;
- default :
- throw OrekitException.createInternalError(null);
- }
- }
- /** Returns a string representation of this equinoctial parameters object.
- * @return a string representation of this object
- */
- public String toString() {
- return new StringBuffer().append("equinoctial parameters: ").append('{').
- append("a: ").append(a).
- append("; ex: ").append(ex).append("; ey: ").append(ey).
- append("; hx: ").append(hx).append("; hy: ").append(hy).
- append("; lv: ").append(FastMath.toDegrees(lv)).
- append(";}").toString();
- }
- }