CircularOrbit.java
- /* Copyright 2002-2013 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.orbits;
- import java.util.Collection;
- import org.apache.commons.math3.analysis.interpolation.HermiteInterpolator;
- import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
- import org.apache.commons.math3.util.FastMath;
- import org.apache.commons.math3.util.MathUtils;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.frames.Frame;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.PVCoordinates;
- /**
- * This class handles circular orbital parameters.
- * <p>
- * The parameters used internally are the circular elements which can be
- * related to keplerian elements as follows:
- * <ul>
- * <li>a</li>
- * <li>e<sub>x</sub> = e cos(ω)</li>
- * <li>e<sub>y</sub> = e sin(ω)</li>
- * <li>i</li>
- * <li>Ω</li>
- * <li>α<sub>v</sub> = v + ω</li>
- * </ul>
- * where Ω stands for the Right Ascension of the Ascending Node and
- * α<sub>v</sub> stands for the true latitude argument
- * </p>
- * <p>
- * The conversion equations from and to keplerian elements given above hold only
- * when both sides are unambiguously defined, i.e. when orbit is neither equatorial
- * nor circular. When orbit is circular (but not equatorial), the circular
- * parameters are still unambiguously defined whereas some keplerian elements
- * (more precisely ω and Ω) become ambiguous. When orbit is equatorial,
- * neither the keplerian nor the circular parameters can be defined unambiguously.
- * {@link EquinoctialOrbit equinoctial orbits} is the recommended way to represent
- * orbits.
- * </p>
- * <p>
- * The instance <code>CircularOrbit</code> is guaranteed to be immutable.
- * </p>
- * @see Orbit
- * @see KeplerianOrbit
- * @see CartesianOrbit
- * @see EquinoctialOrbit
- * @author Luc Maisonobe
- * @author Fabien Maussion
- * @author Véronique Pommier-Maurussane
- */
- public class CircularOrbit
- extends Orbit {
- /** Identifier for mean latitude argument.
- * @deprecated as of 6.0 replaced by {@link PositionAngle}
- */
- @Deprecated
- public static final int MEAN_LONGITUDE_ARGUMENT = 0;
- /** Identifier for eccentric latitude argument.
- * @deprecated as of 6.0 replaced by {@link PositionAngle}
- */
- @Deprecated
- public static final int ECCENTRIC_LONGITUDE_ARGUMENT = 1;
- /** Identifier for true latitude argument.
- * @deprecated as of 6.0 replaced by {@link PositionAngle}
- */
- @Deprecated
- public static final int TRUE_LONGITUDE_ARGUMENT = 2;
- /** Serializable UID. */
- private static final long serialVersionUID = 5565190329070485158L;
- /** Semi-major axis (m). */
- private final double a;
- /** First component of the circular eccentricity vector. */
- private final double ex;
- /** Second component of the circular eccentricity vector. */
- private final double ey;
- /** Inclination (rad). */
- private final double i;
- /** Right Ascension of Ascending Node (rad). */
- private final double raan;
- /** True latitude argument (rad). */
- private final double alphaV;
- /** Creates a new instance.
- * @param a semi-major axis (m)
- * @param ex e cos(ω), first component of circular eccentricity vector
- * @param ey e sin(ω), second component of circular eccentricity vector
- * @param i inclination (rad)
- * @param raan right ascension of ascending node (Ω, rad)
- * @param alpha an + ω, mean, eccentric or true latitude argument (rad)
- * @param type type of latitude argument
- * @param frame the frame in which are defined the parameters
- * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
- * @param date date of the orbital parameters
- * @param mu central attraction coefficient (m<sup>3</sup>/s<sup>2</sup>)
- * @exception IllegalArgumentException if eccentricity is equal to 1 or larger or
- * if frame is not a {@link Frame#isPseudoInertial pseudo-inertial frame}
- */
- public CircularOrbit(final double a, final double ex, final double ey,
- final double i, final double raan,
- final double alpha, final PositionAngle type,
- final Frame frame, final AbsoluteDate date, final double mu)
- throws IllegalArgumentException {
- super(frame, date, mu);
- if (ex * ex + ey * ey >= 1.0) {
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.HYPERBOLIC_ORBIT_NOT_HANDLED_AS, getClass().getName());
- }
- this.a = a;
- this.ex = ex;
- this.ey = ey;
- this.i = i;
- this.raan = raan;
- switch (type) {
- case MEAN :
- this.alphaV = eccentricToTrue(meanToEccentric(alpha));
- break;
- case ECCENTRIC :
- this.alphaV = eccentricToTrue(alpha);
- break;
- case TRUE :
- this.alphaV = alpha;
- break;
- default :
- throw OrekitException.createInternalError(null);
- }
- }
- /** Creates a new instance.
- * @param a semi-major axis (m)
- * @param ex e cos(ω), first component of circular eccentricity vector
- * @param ey e sin(ω), second component of circular eccentricity vector
- * @param i inclination (rad)
- * @param raan right ascension of ascending node (Ω, rad)
- * @param alpha an + ω, mean, eccentric or true latitude argument (rad)
- * @param type type of latitude argument, must be one of {@link #MEAN_LONGITUDE_ARGUMENT},
- * {@link #ECCENTRIC_LONGITUDE_ARGUMENT} or {@link #TRUE_LONGITUDE_ARGUMENT}
- * @param frame the frame in which are defined the parameters
- * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
- * @param date date of the orbital parameters
- * @param mu central attraction coefficient (m<sup>3</sup>/s<sup>2</sup>)
- * @exception IllegalArgumentException if the latitude argument type is not
- * one of {@link #MEAN_LONGITUDE_ARGUMENT}, {@link #ECCENTRIC_LONGITUDE_ARGUMENT}
- * or {@link #TRUE_LONGITUDE_ARGUMENT} or if frame is not a {@link
- * Frame#isPseudoInertial pseudo-inertial frame}
- * @see #MEAN_LONGITUDE_ARGUMENT
- * @see #ECCENTRIC_LONGITUDE_ARGUMENT
- * @see #TRUE_LONGITUDE_ARGUMENT
- * @deprecated as of 6.0 replaced by {@link #CircularOrbit(double, double, double,
- * double, double, double, PositionAngle, Frame, AbsoluteDate, double)}
- * @exception IllegalArgumentException if eccentricity is equal to 1 or larger or
- * if frame is not a {@link Frame#isPseudoInertial pseudo-inertial frame}
- */
- @Deprecated
- public CircularOrbit(final double a, final double ex, final double ey,
- final double i, final double raan,
- final double alpha, final int type,
- final Frame frame, final AbsoluteDate date, final double mu)
- throws IllegalArgumentException {
- super(frame, date, mu);
- if (ex * ex + ey * ey >= 1.0) {
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.HYPERBOLIC_ORBIT_NOT_HANDLED_AS, getClass().getName());
- }
- this.a = a;
- this.ex = ex;
- this.ey = ey;
- this.i = i;
- this.raan = raan;
- switch (type) {
- case MEAN_LONGITUDE_ARGUMENT :
- this.alphaV = eccentricToTrue(meanToEccentric(alpha));
- break;
- case ECCENTRIC_LONGITUDE_ARGUMENT :
- this.alphaV = eccentricToTrue(alpha);
- break;
- case TRUE_LONGITUDE_ARGUMENT :
- this.alphaV = alpha;
- break;
- default :
- this.alphaV = Double.NaN;
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.ANGLE_TYPE_NOT_SUPPORTED,
- "MEAN_LONGITUDE_ARGUMENT", "ECCENTRIC_LONGITUDE_ARGUMENT",
- "TRUE_LONGITUDE_ARGUMENT");
- }
- }
- /** Constructor from cartesian parameters.
- * @param pvCoordinates the {@link PVCoordinates} in inertial frame
- * @param frame the frame in which are defined the {@link PVCoordinates}
- * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
- * @param date date of the orbital parameters
- * @param mu central attraction coefficient (m<sup>3</sup>/s<sup>2</sup>)
- * @exception IllegalArgumentException if frame is not a {@link
- * Frame#isPseudoInertial pseudo-inertial frame}
- */
- public CircularOrbit(final PVCoordinates pvCoordinates, final Frame frame,
- final AbsoluteDate date, final double mu)
- throws IllegalArgumentException {
- super(pvCoordinates, frame, date, mu);
- // compute semi-major axis
- final Vector3D pvP = pvCoordinates.getPosition();
- final Vector3D pvV = pvCoordinates.getVelocity();
- final double r = pvP.getNorm();
- final double V2 = pvV.getNormSq();
- final double rV2OnMu = r * V2 / mu;
- if (rV2OnMu > 2) {
- throw OrekitException.createIllegalArgumentException(
- OrekitMessages.HYPERBOLIC_ORBIT_NOT_HANDLED_AS, getClass().getName());
- }
- a = r / (2 - rV2OnMu);
- // compute inclination
- final Vector3D momentum = pvCoordinates.getMomentum();
- i = Vector3D.angle(momentum, Vector3D.PLUS_K);
- // compute right ascension of ascending node
- final Vector3D node = Vector3D.crossProduct(Vector3D.PLUS_K, momentum);
- raan = FastMath.atan2(node.getY(), node.getX());
- // 2D-coordinates in the canonical frame
- final double cosRaan = FastMath.cos(raan);
- final double sinRaan = FastMath.sin(raan);
- final double cosI = FastMath.cos(i);
- final double sinI = FastMath.sin(i);
- final double xP = pvP.getX();
- final double yP = pvP.getY();
- final double zP = pvP.getZ();
- final double x2 = (xP * cosRaan + yP * sinRaan) / a;
- final double y2 = ((yP * cosRaan - xP * sinRaan) * cosI + zP * sinI) / a;
- // compute eccentricity vector
- final double eSE = Vector3D.dotProduct(pvP, pvV) / FastMath.sqrt(mu * a);
- final double eCE = rV2OnMu - 1;
- final double e2 = eCE * eCE + eSE * eSE;
- final double f = eCE - e2;
- final double g = FastMath.sqrt(1 - e2) * eSE;
- final double aOnR = a / r;
- final double a2OnR2 = aOnR * aOnR;
- ex = a2OnR2 * (f * x2 + g * y2);
- ey = a2OnR2 * (f * y2 - g * x2);
- // compute latitude argument
- final double beta = 1 / (1 + FastMath.sqrt(1 - ex * ex - ey * ey));
- alphaV = eccentricToTrue(FastMath.atan2(y2 + ey + eSE * beta * ex, x2 + ex - eSE * beta * ey));
- }
- /** Constructor from any kind of orbital parameters.
- * @param op orbital parameters to copy
- */
- public CircularOrbit(final Orbit op) {
- super(op.getFrame(), op.getDate(), op.getMu());
- a = op.getA();
- i = op.getI();
- raan = FastMath.atan2(op.getHy(), op.getHx());
- final double cosRaan = FastMath.cos(raan);
- final double sinRaan = FastMath.sin(raan);
- final double equiEx = op.getEquinoctialEx();
- final double equiEy = op.getEquinoctialEy();
- ex = equiEx * cosRaan + equiEy * sinRaan;
- ey = equiEy * cosRaan - equiEx * sinRaan;
- this.alphaV = op.getLv() - raan;
- }
- /** {@inheritDoc} */
- public OrbitType getType() {
- return OrbitType.CIRCULAR;
- }
- /** {@inheritDoc} */
- public double getA() {
- return a;
- }
- /** {@inheritDoc} */
- public double getEquinoctialEx() {
- return ex * FastMath.cos(raan) - ey * FastMath.sin(raan);
- }
- /** {@inheritDoc} */
- public double getEquinoctialEy() {
- return ey * FastMath.cos(raan) + ex * FastMath.sin(raan);
- }
- /** Get the first component of the circular eccentricity vector.
- * @return ex = e cos(ω), first component of the circular eccentricity vector
- */
- public double getCircularEx() {
- return ex;
- }
- /** Get the second component of the circular eccentricity vector.
- * @return ey = e sin(ω), second component of the circular eccentricity vector
- */
- public double getCircularEy() {
- return ey;
- }
- /** {@inheritDoc} */
- public double getHx() {
- return FastMath.cos(raan) * FastMath.tan(i / 2);
- }
- /** {@inheritDoc} */
- public double getHy() {
- return FastMath.sin(raan) * FastMath.tan(i / 2);
- }
- /** Get the true latitude argument.
- * @return v + ω true latitude argument (rad)
- */
- public double getAlphaV() {
- return alphaV;
- }
- /** Get the latitude argument.
- * @param type type of the angle
- * @return latitude argument (rad)
- */
- public double getAlpha(final PositionAngle type) {
- return (type == PositionAngle.MEAN) ? getAlphaM() :
- ((type == PositionAngle.ECCENTRIC) ? getAlphaE() :
- getAlphaV());
- }
- /** Get the eccentric latitude argument.
- * @return E + ω eccentric latitude argument (rad)
- */
- public double getAlphaE() {
- final double epsilon = FastMath.sqrt(1 - ex * ex - ey * ey);
- final double cosAlphaV = FastMath.cos(alphaV);
- final double sinAlphaV = FastMath.sin(alphaV);
- return alphaV + 2 * FastMath.atan((ey * cosAlphaV - ex * sinAlphaV) /
- (epsilon + 1 + ex * cosAlphaV + ey * sinAlphaV));
- }
- /** Computes the true latitude argument from the eccentric latitude argument.
- * @param alphaE = E + ω eccentric latitude argument (rad)
- * @return the true latitude argument.
- */
- private double eccentricToTrue(final double alphaE) {
- final double epsilon = FastMath.sqrt(1 - ex * ex - ey * ey);
- final double cosAlphaE = FastMath.cos(alphaE);
- final double sinAlphaE = FastMath.sin(alphaE);
- return alphaE + 2 * FastMath.atan((ex * sinAlphaE - ey * cosAlphaE) /
- (epsilon + 1 - ex * cosAlphaE - ey * sinAlphaE));
- }
- /** Get the mean latitude argument.
- * @return M + ω mean latitude argument (rad)
- */
- public double getAlphaM() {
- final double alphaE = getAlphaE();
- return alphaE - ex * FastMath.sin(alphaE) + ey * FastMath.cos(alphaE);
- }
- /** Computes the eccentric latitude argument from the mean latitude argument.
- * @param alphaM = M + ω mean latitude argument (rad)
- * @return the eccentric latitude argument.
- */
- private double meanToEccentric(final double alphaM) {
- // Generalization of Kepler equation to circular parameters
- // with alphaE = PA + E and
- // alphaM = PA + M = alphaE - ex.sin(alphaE) + ey.cos(alphaE)
- double alphaE = alphaM;
- double shift = 0.0;
- double alphaEMalphaM = 0.0;
- double cosAlphaE = FastMath.cos(alphaE);
- double sinAlphaE = FastMath.sin(alphaE);
- int iter = 0;
- do {
- final double f2 = ex * sinAlphaE - ey * cosAlphaE;
- final double f1 = 1.0 - ex * cosAlphaE - ey * sinAlphaE;
- final double f0 = alphaEMalphaM - f2;
- final double f12 = 2.0 * f1;
- shift = f0 * f12 / (f1 * f12 - f0 * f2);
- alphaEMalphaM -= shift;
- alphaE = alphaM + alphaEMalphaM;
- cosAlphaE = FastMath.cos(alphaE);
- sinAlphaE = FastMath.sin(alphaE);
- } while ((++iter < 50) && (FastMath.abs(shift) > 1.0e-12));
- return alphaE;
- }
- /** {@inheritDoc} */
- public double getE() {
- return FastMath.sqrt(ex * ex + ey * ey);
- }
- /** {@inheritDoc} */
- public double getI() {
- return i;
- }
- /** Get the right ascension of the ascending node.
- * @return right ascension of the ascending node (rad)
- */
- public double getRightAscensionOfAscendingNode() {
- return raan;
- }
- /** {@inheritDoc} */
- public double getLv() {
- return alphaV + raan;
- }
- /** {@inheritDoc} */
- public double getLE() {
- return getAlphaE() + raan;
- }
- /** {@inheritDoc} */
- public double getLM() {
- return getAlphaM() + raan;
- }
- /** {@inheritDoc} */
- protected PVCoordinates initPVCoordinates() {
- // get equinoctial parameters
- final double equEx = getEquinoctialEx();
- final double equEy = getEquinoctialEy();
- final double hx = getHx();
- final double hy = getHy();
- final double lE = getLE();
- // inclination-related intermediate parameters
- final double hx2 = hx * hx;
- final double hy2 = hy * hy;
- final double factH = 1. / (1 + hx2 + hy2);
- // reference axes defining the orbital plane
- final double ux = (1 + hx2 - hy2) * factH;
- final double uy = 2 * hx * hy * factH;
- final double uz = -2 * hy * factH;
- final double vx = uy;
- final double vy = (1 - hx2 + hy2) * factH;
- final double vz = 2 * hx * factH;
- // eccentricity-related intermediate parameters
- final double exey = equEx * equEy;
- final double ex2 = equEx * equEx;
- final double ey2 = equEy * equEy;
- final double e2 = ex2 + ey2;
- final double eta = 1 + FastMath.sqrt(1 - e2);
- final double beta = 1. / eta;
- // eccentric latitude argument
- final double cLe = FastMath.cos(lE);
- final double sLe = FastMath.sin(lE);
- final double exCeyS = equEx * cLe + equEy * sLe;
- // coordinates of position and velocity in the orbital plane
- final double x = a * ((1 - beta * ey2) * cLe + beta * exey * sLe - equEx);
- final double y = a * ((1 - beta * ex2) * sLe + beta * exey * cLe - equEy);
- final double factor = FastMath.sqrt(getMu() / a) / (1 - exCeyS);
- final double xdot = factor * (-sLe + beta * equEy * exCeyS);
- final double ydot = factor * ( cLe - beta * equEx * exCeyS);
- final Vector3D position =
- new Vector3D(x * ux + y * vx, x * uy + y * vy, x * uz + y * vz);
- final Vector3D velocity =
- new Vector3D(xdot * ux + ydot * vx, xdot * uy + ydot * vy, xdot * uz + ydot * vz);
- return new PVCoordinates(position, velocity);
- }
- /** {@inheritDoc} */
- public CircularOrbit shiftedBy(final double dt) {
- return new CircularOrbit(a, ex, ey, i, raan,
- getAlphaM() + getKeplerianMeanMotion() * dt,
- PositionAngle.MEAN, getFrame(),
- getDate().shiftedBy(dt), getMu());
- }
- /** {@inheritDoc}
- * <p>
- * The interpolated instance is created by polynomial Hermite interpolation
- * on circular elements, without derivatives (which means the interpolation
- * falls back to Lagrange interpolation only).
- * </p>
- * <p>
- * As this implementation of interpolation is polynomial, it should be used only
- * with small samples (about 10-20 points) in order to avoid <a
- * href="http://en.wikipedia.org/wiki/Runge%27s_phenomenon">Runge's phenomenon</a>
- * and numerical problems (including NaN appearing).
- * </p>
- * <p>
- * If orbit interpolation on large samples is needed, using the {@link
- * org.orekit.propagation.analytical.Ephemeris} class is a better way than using this
- * low-level interpolation. The Ephemeris class automatically handles selection of
- * a neighboring sub-sample with a predefined number of point from a large global sample
- * in a thread-safe way.
- * </p>
- */
- public CircularOrbit interpolate(final AbsoluteDate date, final Collection<Orbit> sample) {
- // set up an interpolator
- final HermiteInterpolator interpolator = new HermiteInterpolator();
- // add sample points
- AbsoluteDate previousDate = null;
- double previousRAAN = Double.NaN;
- double previousAlphaM = Double.NaN;
- for (final Orbit orbit : sample) {
- final CircularOrbit circ = (CircularOrbit) OrbitType.CIRCULAR.convertType(orbit);
- final double continuousRAAN;
- final double continuousAlphaM;
- if (previousDate == null) {
- continuousRAAN = circ.getRightAscensionOfAscendingNode();
- continuousAlphaM = circ.getAlphaM();
- } else {
- final double dt = circ.getDate().durationFrom(previousDate);
- final double keplerAM = previousAlphaM + circ.getKeplerianMeanMotion() * dt;
- continuousRAAN = MathUtils.normalizeAngle(circ.getRightAscensionOfAscendingNode(), previousRAAN);
- continuousAlphaM = MathUtils.normalizeAngle(circ.getAlphaM(), keplerAM);
- }
- previousDate = circ.getDate();
- previousRAAN = continuousRAAN;
- previousAlphaM = continuousAlphaM;
- interpolator.addSamplePoint(circ.getDate().durationFrom(date),
- new double[] {
- circ.getA(),
- circ.getCircularEx(),
- circ.getCircularEy(),
- circ.getI(),
- continuousRAAN,
- continuousAlphaM
- });
- }
- // interpolate
- final double[] interpolated = interpolator.value(0);
- // build a new interpolated instance
- return new CircularOrbit(interpolated[0], interpolated[1], interpolated[2],
- interpolated[3], interpolated[4], interpolated[5],
- PositionAngle.MEAN, getFrame(), date, getMu());
- }
- /** {@inheritDoc} */
- protected double[][] computeJacobianMeanWrtCartesian() {
- final double[][] jacobian = new double[6][6];
- // compute various intermediate parameters
- final PVCoordinates pvc = getPVCoordinates();
- final Vector3D position = pvc.getPosition();
- final Vector3D velocity = pvc.getVelocity();
- final double x = position.getX();
- final double y = position.getY();
- final double z = position.getZ();
- final double vx = velocity.getX();
- final double vy = velocity.getY();
- final double vz = velocity.getZ();
- final double pv = Vector3D.dotProduct(position, velocity);
- final double r2 = position.getNormSq();
- final double r = FastMath.sqrt(r2);
- final double v2 = velocity.getNormSq();
- final double mu = getMu();
- final double oOsqrtMuA = 1 / FastMath.sqrt(mu * a);
- final double rOa = r / a;
- final double aOr = a / r;
- final double aOr2 = a / r2;
- final double a2 = a * a;
- final double ex2 = ex * ex;
- final double ey2 = ey * ey;
- final double e2 = ex2 + ey2;
- final double epsilon = FastMath.sqrt(1 - e2);
- final double beta = 1 / (1 + epsilon);
- final double eCosE = 1 - rOa;
- final double eSinE = pv * oOsqrtMuA;
- final double cosI = FastMath.cos(i);
- final double sinI = FastMath.sin(i);
- final double cosRaan = FastMath.cos(raan);
- final double sinRaan = FastMath.sin(raan);
- // da
- fillHalfRow(2 * aOr * aOr2, position, jacobian[0], 0);
- fillHalfRow(2 * a2 / mu, velocity, jacobian[0], 3);
- // differentials of the normalized momentum
- final Vector3D danP = new Vector3D(v2, position, -pv, velocity);
- final Vector3D danV = new Vector3D(r2, velocity, -pv, position);
- final double recip = 1 / pvc.getMomentum().getNorm();
- final double recip2 = recip * recip;
- final Vector3D dwXP = new Vector3D(recip, new Vector3D( 0, vz, -vy), -recip2 * sinRaan * sinI, danP);
- final Vector3D dwYP = new Vector3D(recip, new Vector3D(-vz, 0, vx), recip2 * cosRaan * sinI, danP);
- final Vector3D dwZP = new Vector3D(recip, new Vector3D( vy, -vx, 0), -recip2 * cosI, danP);
- final Vector3D dwXV = new Vector3D(recip, new Vector3D( 0, -z, y), -recip2 * sinRaan * sinI, danV);
- final Vector3D dwYV = new Vector3D(recip, new Vector3D( z, 0, -x), recip2 * cosRaan * sinI, danV);
- final Vector3D dwZV = new Vector3D(recip, new Vector3D( -y, x, 0), -recip2 * cosI, danV);
- // di
- fillHalfRow(sinRaan * cosI, dwXP, -cosRaan * cosI, dwYP, -sinI, dwZP, jacobian[3], 0);
- fillHalfRow(sinRaan * cosI, dwXV, -cosRaan * cosI, dwYV, -sinI, dwZV, jacobian[3], 3);
- // dRaan
- fillHalfRow(sinRaan / sinI, dwYP, cosRaan / sinI, dwXP, jacobian[4], 0);
- fillHalfRow(sinRaan / sinI, dwYV, cosRaan / sinI, dwXV, jacobian[4], 3);
- // orbital frame: (p, q, w) p along ascending node, w along momentum
- // the coordinates of the spacecraft in this frame are: (u, v, 0)
- final double u = x * cosRaan + y * sinRaan;
- final double cv = -x * sinRaan + y * cosRaan;
- final double v = cv * cosI + z * sinI;
- // du
- final Vector3D duP = new Vector3D(cv * cosRaan / sinI, dwXP,
- cv * sinRaan / sinI, dwYP,
- 1, new Vector3D(cosRaan, sinRaan, 0));
- final Vector3D duV = new Vector3D(cv * cosRaan / sinI, dwXV,
- cv * sinRaan / sinI, dwYV);
- // dv
- final Vector3D dvP = new Vector3D(-u * cosRaan * cosI / sinI + sinRaan * z, dwXP,
- -u * sinRaan * cosI / sinI - cosRaan * z, dwYP,
- cv, dwZP,
- 1, new Vector3D(-sinRaan * cosI, cosRaan * cosI, sinI));
- final Vector3D dvV = new Vector3D(-u * cosRaan * cosI / sinI + sinRaan * z, dwXV,
- -u * sinRaan * cosI / sinI - cosRaan * z, dwYV,
- cv, dwZV);
- final Vector3D dc1P = new Vector3D(aOr2 * (2 * eSinE * eSinE + 1 - eCosE) / r2, position,
- -2 * aOr2 * eSinE * oOsqrtMuA, velocity);
- final Vector3D dc1V = new Vector3D(-2 * aOr2 * eSinE * oOsqrtMuA, position,
- 2 / mu, velocity);
- final Vector3D dc2P = new Vector3D(aOr2 * eSinE * (eSinE * eSinE - (1 - e2)) / (r2 * epsilon), position,
- aOr2 * (1 - e2 - eSinE * eSinE) * oOsqrtMuA / epsilon, velocity);
- final Vector3D dc2V = new Vector3D(aOr2 * (1 - e2 - eSinE * eSinE) * oOsqrtMuA / epsilon, position,
- eSinE / (mu * epsilon), velocity);
- final double cof1 = aOr2 * (eCosE - e2);
- final double cof2 = aOr2 * epsilon * eSinE;
- final Vector3D dexP = new Vector3D(u, dc1P, v, dc2P, cof1, duP, cof2, dvP);
- final Vector3D dexV = new Vector3D(u, dc1V, v, dc2V, cof1, duV, cof2, dvV);
- final Vector3D deyP = new Vector3D(v, dc1P, -u, dc2P, cof1, dvP, -cof2, duP);
- final Vector3D deyV = new Vector3D(v, dc1V, -u, dc2V, cof1, dvV, -cof2, duV);
- fillHalfRow(1, dexP, jacobian[1], 0);
- fillHalfRow(1, dexV, jacobian[1], 3);
- fillHalfRow(1, deyP, jacobian[2], 0);
- fillHalfRow(1, deyV, jacobian[2], 3);
- final double cle = u / a + ex - eSinE * beta * ey;
- final double sle = v / a + ey + eSinE * beta * ex;
- final double m1 = beta * eCosE;
- final double m2 = 1 - m1 * eCosE;
- final double m3 = (u * ey - v * ex) + eSinE * beta * (u * ex + v * ey);
- final double m4 = -sle + cle * eSinE * beta;
- final double m5 = cle + sle * eSinE * beta;
- fillHalfRow((2 * m3 / r + aOr * eSinE + m1 * eSinE * (1 + m1 - (1 + aOr) * m2) / epsilon) / r2, position,
- (m1 * m2 / epsilon - 1) * oOsqrtMuA, velocity,
- m4, dexP, m5, deyP, -sle / a, duP, cle / a, dvP,
- jacobian[5], 0);
- fillHalfRow((m1 * m2 / epsilon - 1) * oOsqrtMuA, position,
- (2 * m3 + eSinE * a + m1 * eSinE * r * (eCosE * beta * 2 - aOr * m2) / epsilon) / mu, velocity,
- m4, dexV, m5, deyV, -sle / a, duV, cle / a, dvV,
- jacobian[5], 3);
- return jacobian;
- }
- /** {@inheritDoc} */
- protected double[][] computeJacobianEccentricWrtCartesian() {
- // start by computing the Jacobian with mean angle
- final double[][] jacobian = computeJacobianMeanWrtCartesian();
- // Differentiating the Kepler equation aM = aE - ex sin aE + ey cos aE leads to:
- // daM = (1 - ex cos aE - ey sin aE) dE - sin aE dex + cos aE dey
- // which is inverted and rewritten as:
- // daE = a/r daM + sin aE a/r dex - cos aE a/r dey
- final double alphaE = getAlphaE();
- final double cosAe = FastMath.cos(alphaE);
- final double sinAe = FastMath.sin(alphaE);
- final double aOr = 1 / (1 - ex * cosAe - ey * sinAe);
- // update longitude row
- final double[] rowEx = jacobian[1];
- final double[] rowEy = jacobian[2];
- final double[] rowL = jacobian[5];
- for (int j = 0; j < 6; ++j) {
- rowL[j] = aOr * (rowL[j] + sinAe * rowEx[j] - cosAe * rowEy[j]);
- }
- return jacobian;
- }
- /** {@inheritDoc} */
- protected double[][] computeJacobianTrueWrtCartesian() {
- // start by computing the Jacobian with eccentric angle
- final double[][] jacobian = computeJacobianEccentricWrtCartesian();
- // Differentiating the eccentric latitude equation
- // tan((aV - aE)/2) = [ex sin aE - ey cos aE] / [sqrt(1-ex^2-ey^2) + 1 - ex cos aE - ey sin aE]
- // leads to
- // cT (daV - daE) = cE daE + cX dex + cY dey
- // with
- // cT = [d^2 + (ex sin aE - ey cos aE)^2] / 2
- // d = 1 + sqrt(1-ex^2-ey^2) - ex cos aE - ey sin aE
- // cE = (ex cos aE + ey sin aE) (sqrt(1-ex^2-ey^2) + 1) - ex^2 - ey^2
- // cX = sin aE (sqrt(1-ex^2-ey^2) + 1) - ey + ex (ex sin aE - ey cos aE) / sqrt(1-ex^2-ey^2)
- // cY = -cos aE (sqrt(1-ex^2-ey^2) + 1) + ex + ey (ex sin aE - ey cos aE) / sqrt(1-ex^2-ey^2)
- // which can be solved to find the differential of the true latitude
- // daV = (cT + cE) / cT daE + cX / cT deX + cY / cT deX
- final double alphaE = getAlphaE();
- final double cosAe = FastMath.cos(alphaE);
- final double sinAe = FastMath.sin(alphaE);
- final double eSinE = ex * sinAe - ey * cosAe;
- final double ecosE = ex * cosAe + ey * sinAe;
- final double e2 = ex * ex + ey * ey;
- final double epsilon = FastMath.sqrt(1 - e2);
- final double onePeps = 1 + epsilon;
- final double d = onePeps - ecosE;
- final double cT = (d * d + eSinE * eSinE) / 2;
- final double cE = ecosE * onePeps - e2;
- final double cX = ex * eSinE / epsilon - ey + sinAe * onePeps;
- final double cY = ey * eSinE / epsilon + ex - cosAe * onePeps;
- final double factorLe = (cT + cE) / cT;
- final double factorEx = cX / cT;
- final double factorEy = cY / cT;
- // update latitude row
- final double[] rowEx = jacobian[1];
- final double[] rowEy = jacobian[2];
- final double[] rowA = jacobian[5];
- for (int j = 0; j < 6; ++j) {
- rowA[j] = factorLe * rowA[j] + factorEx * rowEx[j] + factorEy * rowEy[j];
- }
- return jacobian;
- }
- /** {@inheritDoc} */
- public void addKeplerContribution(final PositionAngle type, final double gm,
- final double[] pDot) {
- final double oMe2;
- final double ksi;
- final double n = FastMath.sqrt(gm / a) / a;
- switch (type) {
- case MEAN :
- pDot[5] += n;
- break;
- case ECCENTRIC :
- oMe2 = 1 - ex * ex - ey * ey;
- ksi = 1 + ex * FastMath.cos(alphaV) + ey * FastMath.sin(alphaV);
- pDot[5] += n * ksi / oMe2;
- break;
- case TRUE :
- oMe2 = 1 - ex * ex - ey * ey;
- ksi = 1 + ex * FastMath.cos(alphaV) + ey * FastMath.sin(alphaV);
- pDot[5] += n * ksi * ksi / (oMe2 * FastMath.sqrt(oMe2));
- break;
- default :
- throw OrekitException.createInternalError(null);
- }
- }
- /** Returns a string representation of this Orbit object.
- * @return a string representation of this object
- */
- public String toString() {
- return new StringBuffer().append("circular parameters: ").append('{').
- append("a: ").append(a).
- append(", ex: ").append(ex).append(", ey: ").append(ey).
- append(", i: ").append(FastMath.toDegrees(i)).
- append(", raan: ").append(FastMath.toDegrees(raan)).
- append(", alphaV: ").append(FastMath.toDegrees(alphaV)).
- append(";}").toString();
- }
- }