HolmesFeatherstoneAttractionModel.java
- /* Copyright 2002-2013 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.forces.gravity;
- import java.io.Serializable;
- import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldVector3D;
- import org.apache.commons.math3.geometry.euclidean.threed.SphericalCoordinates;
- import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
- import org.apache.commons.math3.linear.Array2DRowRealMatrix;
- import org.apache.commons.math3.linear.RealMatrix;
- import org.apache.commons.math3.ode.AbstractParameterizable;
- import org.apache.commons.math3.util.FastMath;
- import org.orekit.errors.OrekitException;
- import org.orekit.forces.ForceModel;
- import org.orekit.forces.gravity.potential.NormalizedSphericalHarmonicsProvider;
- import org.orekit.forces.gravity.potential.NormalizedSphericalHarmonicsProvider.NormalizedSphericalHarmonics;
- import org.orekit.forces.gravity.potential.TideSystem;
- import org.orekit.forces.gravity.potential.TideSystemProvider;
- import org.orekit.frames.Frame;
- import org.orekit.frames.Transform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.events.EventDetector;
- import org.orekit.propagation.numerical.TimeDerivativesEquations;
- import org.orekit.time.AbsoluteDate;
- /** This class represents the gravitational field of a celestial body.
- * <p>
- * The algorithm implemented in this class has been designed by S. A. Holmes
- * and W. E. Featherstone from Department of Spatial Sciences, Curtin University
- * of Technology, Perth, Australia. It is described in their 2002 paper: <a
- * href="http://cct.gfy.ku.dk/publ_others/ccta1870.pdf">A unified approach to
- * the Clenshaw summation and the recursive computation of very high degree and
- * order normalised associated Legendre functions</a> (Journal of Geodesy (2002)
- * 76: 279–299).
- * </p>
- * <p>
- * This model directly uses normalized coefficients and stable recursion algorithms
- * so it is more suited to high degree gravity fields than the classical {@link
- * CunninghamAttractionModel Cunningham} or {@link DrozinerAttractionModel Droziner}
- * models which use un-normalized coefficients.
- * </p>
- * <p>
- * Among the different algorithms presented in Holmes and Featherstone paper, this
- * class implements the <em>modified forward row method</em>. All recursion coefficients
- * are precomputed and stored for greater performance. This caching was suggested in the
- * paper but not used due to the large memory requirements. Since 2002, even low end
- * computers and mobile devices do have sufficient memory so this caching has become
- * feasible nowadays.
- * <p>
- * @author Luc Maisonobe
- * @since 6.0
- */
- public class HolmesFeatherstoneAttractionModel
- extends AbstractParameterizable implements ForceModel, TideSystemProvider {
- /** Exponent scaling to avoid floating point overflow.
- * <p>The paper uses 10^280, we prefer a power of two to preserve accuracy thanks to
- * {@link FastMath#scalb(double, int)}, so we use 2^930 which has the same order of magnitude.
- */
- private static final int SCALING = 930;
- /** Provider for the spherical harmonics. */
- private final NormalizedSphericalHarmonicsProvider provider;
- /** Central attraction coefficient. */
- private double mu;
- /** Rotating body. */
- private final Frame bodyFrame;
- /** Recursion coefficients g<sub>n,m</sub>/√j. */
- private final double[] gnmOj;
- /** Recursion coefficients h<sub>n,m</sub>/√j. */
- private final double[] hnmOj;
- /** Recursion coefficients e<sub>n,m</sub>. */
- private final double[] enm;
- /** Scaled sectorial Pbar<sub>m,m</sub>/u<sup>m</sup> × 2<sup>-SCALING</sup>. */
- private final double[] sectorial;
- /** Creates a new instance.
- * @param centralBodyFrame rotating body frame
- * @param provider provider for spherical harmonics
- * @since 6.0
- */
- public HolmesFeatherstoneAttractionModel(final Frame centralBodyFrame,
- final NormalizedSphericalHarmonicsProvider provider) {
- super(NewtonianAttraction.CENTRAL_ATTRACTION_COEFFICIENT);
- this.provider = provider;
- this.mu = provider.getMu();
- this.bodyFrame = centralBodyFrame;
- // the pre-computed arrays hold coefficients from triangular arrays in a single
- // storing neither diagonal elements (n = m) nor the non-diagonal element n=1, m=0
- final int degree = provider.getMaxDegree();
- final int size = FastMath.max(0, degree * (degree + 1) / 2 - 1);
- gnmOj = new double[size];
- hnmOj = new double[size];
- enm = new double[size];
- // pre-compute the recursion coefficients corresponding to equations 19 and 22
- // from Holmes and Featherstone paper
- // for cache efficiency, elements are stored in the same order they will be used
- // later on, i.e. from rightmost column to leftmost column
- int index = 0;
- for (int m = degree; m >= 0; --m) {
- final int j = (m == 0) ? 2 : 1;
- for (int n = FastMath.max(2, m + 1); n <= degree; ++n) {
- final double f = (n - m) * (n + m + 1);
- gnmOj[index] = 2 * (m + 1) / FastMath.sqrt(j * f);
- hnmOj[index] = FastMath.sqrt((n + m + 2) * (n - m - 1) / (j * f));
- enm[index] = FastMath.sqrt(f / j);
- ++index;
- }
- }
- // scaled sectorial terms corresponding to equation 28 in Holmes and Featherstone paper
- sectorial = new double[degree + 1];
- sectorial[0] = FastMath.scalb(1.0, -SCALING);
- sectorial[1] = FastMath.sqrt(3) * sectorial[0];
- for (int m = 2; m < sectorial.length; ++m) {
- sectorial[m] = FastMath.sqrt((2 * m + 1) / (2.0 * m)) * sectorial[m - 1];
- }
- }
- /** {@inheritDoc} */
- public TideSystem getTideSystem() {
- return provider.getTideSystem();
- }
- /** Compute the value of the gravity field.
- * @param date current date
- * @param position position at which gravity field is desired in body frame
- * @return value of the gravity field (central and non-central parts summed together)
- * @exception OrekitException if position cannot be converted to central body frame
- */
- public double value(final AbsoluteDate date, final Vector3D position)
- throws OrekitException {
- return mu / position.getNorm() + nonCentralPart(date, position);
- }
- /** Compute the non-central part of the gravity field.
- * @param date current date
- * @param position position at which gravity field is desired in body frame
- * @return value of the non-central part of the gravity field
- * @exception OrekitException if position cannot be converted to central body frame
- */
- public double nonCentralPart(final AbsoluteDate date, final Vector3D position)
- throws OrekitException {
- final int degree = provider.getMaxDegree();
- final int order = provider.getMaxOrder();
- final NormalizedSphericalHarmonics harmonics = provider.onDate(date);
- // allocate the columns for recursion
- double[] pnm0Plus2 = new double[degree + 1];
- double[] pnm0Plus1 = new double[degree + 1];
- double[] pnm0 = new double[degree + 1];
- // compute polar coordinates
- final double x = position.getX();
- final double y = position.getY();
- final double z = position.getZ();
- final double x2 = x * x;
- final double y2 = y * y;
- final double z2 = z * z;
- final double r2 = x2 + y2 + z2;
- final double r = FastMath.sqrt (r2);
- final double rho = FastMath.sqrt(x2 + y2);
- final double t = z / r; // cos(theta), where theta is the polar angle
- final double u = rho / r; // sin(theta), where theta is the polar angle
- final double tOu = z / rho;
- // compute distance powers
- final double[] aOrN = createDistancePowersArray(provider.getAe() / r);
- // compute longitude cosines/sines
- final double[][] cosSinLambda = createCosSinArrays(position.getX() / rho, position.getY() / rho);
- // outer summation over order
- int index = 0;
- double value = 0;
- for (int m = degree; m >= 0; --m) {
- // compute tesseral terms without derivatives
- index = computeTesseral(m, degree, index, t, u, tOu,
- pnm0Plus2, pnm0Plus1, null, pnm0, null, null);
- if (m <= order) {
- // compute contribution of current order to field (equation 5 of the paper)
- // inner summation over degree, for fixed order
- double sumDegreeS = 0;
- double sumDegreeC = 0;
- for (int n = FastMath.max(2, m); n <= degree; ++n) {
- sumDegreeS += pnm0[n] * aOrN[n] * harmonics.getNormalizedSnm(n, m);
- sumDegreeC += pnm0[n] * aOrN[n] * harmonics.getNormalizedCnm(n, m);
- }
- // contribution to outer summation over order
- value = value * u + cosSinLambda[1][m] * sumDegreeS + cosSinLambda[0][m] * sumDegreeC;
- }
- // rotate the recursion arrays
- final double[] tmp = pnm0Plus2;
- pnm0Plus2 = pnm0Plus1;
- pnm0Plus1 = pnm0;
- pnm0 = tmp;
- }
- // scale back
- value = FastMath.scalb(value, SCALING);
- // apply the global mu/r factor
- return mu * value / r;
- }
- /** Compute the gradient of the non-central part of the gravity field.
- * @param date current date
- * @param position position at which gravity field is desired in body frame
- * @return gradient of the non-central part of the gravity field
- * @exception OrekitException if position cannot be converted to central body frame
- */
- public double[] gradient(final AbsoluteDate date, final Vector3D position)
- throws OrekitException {
- final int degree = provider.getMaxDegree();
- final int order = provider.getMaxOrder();
- final NormalizedSphericalHarmonics harmonics = provider.onDate(date);
- // allocate the columns for recursion
- double[] pnm0Plus2 = new double[degree + 1];
- double[] pnm0Plus1 = new double[degree + 1];
- double[] pnm0 = new double[degree + 1];
- final double[] pnm1 = new double[degree + 1];
- // compute polar coordinates
- final double x = position.getX();
- final double y = position.getY();
- final double z = position.getZ();
- final double x2 = x * x;
- final double y2 = y * y;
- final double z2 = z * z;
- final double r2 = x2 + y2 + z2;
- final double r = FastMath.sqrt (r2);
- final double rho2 = x2 + y2;
- final double rho = FastMath.sqrt(rho2);
- final double t = z / r; // cos(theta), where theta is the polar angle
- final double u = rho / r; // sin(theta), where theta is the polar angle
- final double tOu = z / rho;
- // compute distance powers
- final double[] aOrN = createDistancePowersArray(provider.getAe() / r);
- // compute longitude cosines/sines
- final double[][] cosSinLambda = createCosSinArrays(position.getX() / rho, position.getY() / rho);
- // outer summation over order
- int index = 0;
- double value = 0;
- final double[] gradient = new double[3];
- for (int m = degree; m >= 0; --m) {
- // compute tesseral terms with derivatives
- index = computeTesseral(m, degree, index, t, u, tOu,
- pnm0Plus2, pnm0Plus1, null, pnm0, pnm1, null);
- if (m <= order) {
- // compute contribution of current order to field (equation 5 of the paper)
- // inner summation over degree, for fixed order
- double sumDegreeS = 0;
- double sumDegreeC = 0;
- double dSumDegreeSdR = 0;
- double dSumDegreeCdR = 0;
- double dSumDegreeSdTheta = 0;
- double dSumDegreeCdTheta = 0;
- for (int n = FastMath.max(2, m); n <= degree; ++n) {
- final double qSnm = aOrN[n] * harmonics.getNormalizedSnm(n, m);
- final double qCnm = aOrN[n] * harmonics.getNormalizedCnm(n, m);
- final double nOr = n / r;
- final double s0 = pnm0[n] * qSnm;
- final double c0 = pnm0[n] * qCnm;
- final double s1 = pnm1[n] * qSnm;
- final double c1 = pnm1[n] * qCnm;
- sumDegreeS += s0;
- sumDegreeC += c0;
- dSumDegreeSdR -= nOr * s0;
- dSumDegreeCdR -= nOr * c0;
- dSumDegreeSdTheta += s1;
- dSumDegreeCdTheta += c1;
- }
- // contribution to outer summation over order
- // beware that we need to order gradient using the mathematical conventions
- // compliant with the SphericalCoordinates class, so our lambda is its theta
- // (and hence at index 1) and our theta is its phi (and hence at index 2)
- final double sML = cosSinLambda[1][m];
- final double cML = cosSinLambda[0][m];
- value = value * u + sML * sumDegreeS + cML * sumDegreeC;
- gradient[0] = gradient[0] * u + sML * dSumDegreeSdR + cML * dSumDegreeCdR;
- gradient[1] = gradient[1] * u + m * (cML * sumDegreeS - sML * sumDegreeC);
- gradient[2] = gradient[2] * u + sML * dSumDegreeSdTheta + cML * dSumDegreeCdTheta;
- }
- // rotate the recursion arrays
- final double[] tmp = pnm0Plus2;
- pnm0Plus2 = pnm0Plus1;
- pnm0Plus1 = pnm0;
- pnm0 = tmp;
- }
- // scale back
- value = FastMath.scalb(value, SCALING);
- gradient[0] = FastMath.scalb(gradient[0], SCALING);
- gradient[1] = FastMath.scalb(gradient[1], SCALING);
- gradient[2] = FastMath.scalb(gradient[2], SCALING);
- // apply the global mu/r factor
- final double muOr = mu / r;
- value *= muOr;
- gradient[0] = muOr * gradient[0] - value / r;
- gradient[1] *= muOr;
- gradient[2] *= muOr;
- // convert gradient from spherical to Cartesian
- return new SphericalCoordinates(position).toCartesianGradient(gradient);
- }
- /** Compute both the gradient and the hessian of the non-central part of the gravity field.
- * @param date current date
- * @param position position at which gravity field is desired in body frame
- * @return gradient and hessian of the non-central part of the gravity field
- * @exception OrekitException if position cannot be converted to central body frame
- */
- public GradientHessian gradientHessian(final AbsoluteDate date, final Vector3D position)
- throws OrekitException {
- final int degree = provider.getMaxDegree();
- final int order = provider.getMaxOrder();
- final NormalizedSphericalHarmonics harmonics = provider.onDate(date);
- // allocate the columns for recursion
- double[] pnm0Plus2 = new double[degree + 1];
- double[] pnm0Plus1 = new double[degree + 1];
- double[] pnm0 = new double[degree + 1];
- double[] pnm1Plus1 = new double[degree + 1];
- double[] pnm1 = new double[degree + 1];
- final double[] pnm2 = new double[degree + 1];
- // compute polar coordinates
- final double x = position.getX();
- final double y = position.getY();
- final double z = position.getZ();
- final double x2 = x * x;
- final double y2 = y * y;
- final double z2 = z * z;
- final double r2 = x2 + y2 + z2;
- final double r = FastMath.sqrt (r2);
- final double rho2 = x2 + y2;
- final double rho = FastMath.sqrt(rho2);
- final double t = z / r; // cos(theta), where theta is the polar angle
- final double u = rho / r; // sin(theta), where theta is the polar angle
- final double tOu = z / rho;
- // compute distance powers
- final double[] aOrN = createDistancePowersArray(provider.getAe() / r);
- // compute longitude cosines/sines
- final double[][] cosSinLambda = createCosSinArrays(position.getX() / rho, position.getY() / rho);
- // outer summation over order
- int index = 0;
- double value = 0;
- final double[] gradient = new double[3];
- final double[][] hessian = new double[3][3];
- for (int m = degree; m >= 0; --m) {
- // compute tesseral terms
- index = computeTesseral(m, degree, index, t, u, tOu,
- pnm0Plus2, pnm0Plus1, pnm1Plus1, pnm0, pnm1, pnm2);
- if (m <= order) {
- // compute contribution of current order to field (equation 5 of the paper)
- // inner summation over degree, for fixed order
- double sumDegreeS = 0;
- double sumDegreeC = 0;
- double dSumDegreeSdR = 0;
- double dSumDegreeCdR = 0;
- double dSumDegreeSdTheta = 0;
- double dSumDegreeCdTheta = 0;
- double d2SumDegreeSdRdR = 0;
- double d2SumDegreeSdRdTheta = 0;
- double d2SumDegreeSdThetadTheta = 0;
- double d2SumDegreeCdRdR = 0;
- double d2SumDegreeCdRdTheta = 0;
- double d2SumDegreeCdThetadTheta = 0;
- for (int n = FastMath.max(2, m); n <= degree; ++n) {
- final double qSnm = aOrN[n] * harmonics.getNormalizedSnm(n, m);
- final double qCnm = aOrN[n] * harmonics.getNormalizedCnm(n, m);
- final double nOr = n / r;
- final double nnP1Or2 = nOr * (n + 1) / r;
- final double s0 = pnm0[n] * qSnm;
- final double c0 = pnm0[n] * qCnm;
- final double s1 = pnm1[n] * qSnm;
- final double c1 = pnm1[n] * qCnm;
- final double s2 = pnm2[n] * qSnm;
- final double c2 = pnm2[n] * qCnm;
- sumDegreeS += s0;
- sumDegreeC += c0;
- dSumDegreeSdR -= nOr * s0;
- dSumDegreeCdR -= nOr * c0;
- dSumDegreeSdTheta += s1;
- dSumDegreeCdTheta += c1;
- d2SumDegreeSdRdR += nnP1Or2 * s0;
- d2SumDegreeSdRdTheta -= nOr * s1;
- d2SumDegreeSdThetadTheta += s2;
- d2SumDegreeCdRdR += nnP1Or2 * c0;
- d2SumDegreeCdRdTheta -= nOr * c1;
- d2SumDegreeCdThetadTheta += c2;
- }
- // contribution to outer summation over order
- final double sML = cosSinLambda[1][m];
- final double cML = cosSinLambda[0][m];
- value = value * u + sML * sumDegreeS + cML * sumDegreeC;
- gradient[0] = gradient[0] * u + sML * dSumDegreeSdR + cML * dSumDegreeCdR;
- gradient[1] = gradient[1] * u + m * (cML * sumDegreeS - sML * sumDegreeC);
- gradient[2] = gradient[2] * u + sML * dSumDegreeSdTheta + cML * dSumDegreeCdTheta;
- hessian[0][0] = hessian[0][0] * u + sML * d2SumDegreeSdRdR + cML * d2SumDegreeCdRdR;
- hessian[1][0] = hessian[1][0] * u + m * (cML * dSumDegreeSdR - sML * dSumDegreeCdR);
- hessian[2][0] = hessian[2][0] * u + sML * d2SumDegreeSdRdTheta + cML * d2SumDegreeCdRdTheta;
- hessian[1][1] = hessian[1][1] * u - m * m * (sML * sumDegreeS + cML * sumDegreeC);
- hessian[2][1] = hessian[2][1] * u + m * (cML * dSumDegreeSdTheta - sML * dSumDegreeCdTheta);
- hessian[2][2] = hessian[2][2] * u + sML * d2SumDegreeSdThetadTheta + cML * d2SumDegreeCdThetadTheta;
- }
- // rotate the recursion arrays
- final double[] tmp0 = pnm0Plus2;
- pnm0Plus2 = pnm0Plus1;
- pnm0Plus1 = pnm0;
- pnm0 = tmp0;
- final double[] tmp1 = pnm1Plus1;
- pnm1Plus1 = pnm1;
- pnm1 = tmp1;
- }
- // scale back
- value = FastMath.scalb(value, SCALING);
- for (int i = 0; i < 3; ++i) {
- gradient[i] = FastMath.scalb(gradient[i], SCALING);
- for (int j = 0; j <= i; ++j) {
- hessian[i][j] = FastMath.scalb(hessian[i][j], SCALING);
- }
- }
- // apply the global mu/r factor
- final double muOr = mu / r;
- value *= muOr;
- gradient[0] = muOr * gradient[0] - value / r;
- gradient[1] *= muOr;
- gradient[2] *= muOr;
- hessian[0][0] = muOr * hessian[0][0] - 2 * gradient[0] / r;
- hessian[1][0] = muOr * hessian[1][0] - gradient[1] / r;
- hessian[2][0] = muOr * hessian[2][0] - gradient[2] / r;
- hessian[1][1] *= muOr;
- hessian[2][1] *= muOr;
- hessian[2][2] *= muOr;
- // convert gradient and Hessian from spherical to Cartesian
- final SphericalCoordinates sc = new SphericalCoordinates(position);
- return new GradientHessian(sc.toCartesianGradient(gradient),
- sc.toCartesianHessian(hessian, gradient));
- }
- /** Container for gradient and Hessian. */
- public static class GradientHessian implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20130219L;
- /** Gradient. */
- private final double[] gradient;
- /** Hessian. */
- private final double[][] hessian;
- /** Simple constructor.
- * <p>
- * A reference to the arrays is stored, they are <strong>not</strong> cloned.
- * </p>
- * @param gradient gradient
- * @param hessian hessian
- */
- public GradientHessian(final double[] gradient, final double[][] hessian) {
- this.gradient = gradient;
- this.hessian = hessian;
- }
- /** Get a reference to the gradient.
- * @return gradient (a reference to the internal array is returned)
- */
- public double[] getGradient() {
- return gradient;
- }
- /** Get a reference to the Hessian.
- * @return Hessian (a reference to the internal array is returned)
- */
- public double[][] getHessian() {
- return hessian;
- }
- }
- /** Compute a/r powers array.
- * @param aOr a/r
- * @return array containing (a/r)<sup>n</sup>
- */
- private double[] createDistancePowersArray(final double aOr) {
- // initialize array
- final double[] aOrN = new double[provider.getMaxDegree() + 1];
- aOrN[0] = 1;
- aOrN[1] = aOr;
- // fill up array
- for (int n = 2; n < aOrN.length; ++n) {
- final int p = n / 2;
- final int q = n - p;
- aOrN[n] = aOrN[p] * aOrN[q];
- }
- return aOrN;
- }
- /** Compute longitude cosines and sines.
- * @param cosLambda cos(λ)
- * @param sinLambda sin(λ)
- * @return array containing cos(m × λ) in row 0
- * and sin(m × λ) in row 1
- */
- private double[][] createCosSinArrays(final double cosLambda, final double sinLambda) {
- // initialize arrays
- final double[][] cosSin = new double[2][provider.getMaxOrder() + 1];
- cosSin[0][0] = 1;
- cosSin[1][0] = 0;
- if (provider.getMaxOrder() > 0) {
- cosSin[0][1] = cosLambda;
- cosSin[1][1] = sinLambda;
- // fill up array
- for (int m = 2; m < cosSin[0].length; ++m) {
- // m * lambda is split as p * lambda + q * lambda, trying to avoid
- // p or q being much larger than the other. This reduces the number of
- // intermediate results reused to compute each value, and hence should limit
- // as much as possible roundoff error accumulation
- // (this does not change the number of floating point operations)
- final int p = m / 2;
- final int q = m - p;
- cosSin[0][m] = cosSin[0][p] * cosSin[0][q] - cosSin[1][p] * cosSin[1][q];
- cosSin[1][m] = cosSin[1][p] * cosSin[0][q] + cosSin[0][p] * cosSin[1][q];
- }
- }
- return cosSin;
- }
- /** Compute one order of tesseral terms.
- * <p>
- * This corresponds to equations 27 and 30 of the paper.
- * </p>
- * @param m current order
- * @param degree max degree
- * @param index index in the flattened array
- * @param t cos(θ), where θ is the polar angle
- * @param u sin(θ), where θ is the polar angle
- * @param tOu t/u
- * @param pnm0Plus2 array containing scaled P<sub>n,m+2</sub>/u<sup>m+2</sup>
- * @param pnm0Plus1 array containing scaled P<sub>n,m+1</sub>/u<sup>m+1</sup>
- * @param pnm1Plus1 array containing scaled dP<sub>n,m+1</sub>/u<sup>m+1</sup>
- * (may be null if second derivatives are not needed)
- * @param pnm0 array to fill with scaled P<sub>n,m</sub>/u<sup>m</sup>
- * @param pnm1 array to fill with scaled dP<sub>n,m</sub>/u<sup>m</sup>
- * (may be null if first derivatives are not needed)
- * @param pnm2 array to fill with scaled d<sup>2</sup>P<sub>n,m</sub>/u<sup>m</sup>
- * (may be null if second derivatives are not needed)
- * @return new value for index
- */
- private int computeTesseral(final int m, final int degree, final int index,
- final double t, final double u, final double tOu,
- final double[] pnm0Plus2, final double[] pnm0Plus1, final double[] pnm1Plus1,
- final double[] pnm0, final double[] pnm1, final double[] pnm2) {
- final double u2 = u * u;
- // initialize recursion from sectorial terms
- int n = FastMath.max(2, m);
- if (n == m) {
- pnm0[n] = sectorial[n];
- ++n;
- }
- // compute tesseral values
- int localIndex = index;
- while (n <= degree) {
- // value (equation 27 of the paper)
- pnm0[n] = gnmOj[localIndex] * t * pnm0Plus1[n] - hnmOj[localIndex] * u2 * pnm0Plus2[n];
- ++localIndex;
- ++n;
- }
- if (pnm1 != null) {
- // initialize recursion from sectorial terms
- n = FastMath.max(2, m);
- if (n == m) {
- pnm1[n] = m * tOu * pnm0[n];
- ++n;
- }
- // compute tesseral values and derivatives with respect to polar angle
- localIndex = index;
- while (n <= degree) {
- // first derivative (equation 30 of the paper)
- pnm1[n] = m * tOu * pnm0[n] - enm[localIndex] * u * pnm0Plus1[n];
- ++localIndex;
- ++n;
- }
- if (pnm2 != null) {
- // initialize recursion from sectorial terms
- n = FastMath.max(2, m);
- if (n == m) {
- pnm2[n] = m * (tOu * pnm1[n] - pnm0[n] / u2);
- ++n;
- }
- // compute tesseral values and derivatives with respect to polar angle
- localIndex = index;
- while (n <= degree) {
- // second derivative (differential of equation 30 with respect to theta)
- pnm2[n] = m * (tOu * pnm1[n] - pnm0[n] / u2) - enm[localIndex] * u * pnm1Plus1[n];
- ++localIndex;
- ++n;
- }
- }
- }
- return localIndex;
- }
- /** {@inheritDoc} */
- public void addContribution(final SpacecraftState s, final TimeDerivativesEquations adder)
- throws OrekitException {
- // get the position in body frame
- final AbsoluteDate date = s.getDate();
- final Transform fromBodyFrame = bodyFrame.getTransformTo(s.getFrame(), date);
- final Transform toBodyFrame = fromBodyFrame.getInverse();
- final Vector3D position = toBodyFrame.transformPosition(s.getPVCoordinates().getPosition());
- // gradient of the non-central part of the gravity field
- final Vector3D gInertial = fromBodyFrame.transformVector(new Vector3D(gradient(date, position)));
- adder.addXYZAcceleration(gInertial.getX(), gInertial.getY(), gInertial.getZ());
- }
- /** {@inheritDoc} */
- public EventDetector[] getEventsDetectors() {
- return new EventDetector[0];
- }
- /** {@inheritDoc} */
- public double getParameter(final String name)
- throws IllegalArgumentException {
- complainIfNotSupported(name);
- return mu;
- }
- /** {@inheritDoc} */
- public void setParameter(final String name, final double value)
- throws IllegalArgumentException {
- complainIfNotSupported(name);
- mu = value;
- }
- /** {@inheritDoc} */
- public FieldVector3D<DerivativeStructure> accelerationDerivatives(final AbsoluteDate date, final Frame frame,
- final FieldVector3D<DerivativeStructure> position, final FieldVector3D<DerivativeStructure> velocity,
- final FieldRotation<DerivativeStructure> rotation, final DerivativeStructure mass)
- throws OrekitException {
- // get the position in body frame
- final Transform fromBodyFrame = bodyFrame.getTransformTo(frame, date);
- final Transform toBodyFrame = fromBodyFrame.getInverse();
- final Vector3D positionBody = toBodyFrame.transformPosition(position.toVector3D());
- // compute gradient and Hessian
- final GradientHessian gh = gradientHessian(date, positionBody);
- // gradient of the non-central part of the gravity field
- final double[] gInertial = fromBodyFrame.transformVector(new Vector3D(gh.getGradient())).toArray();
- // Hessian of the non-central part of the gravity field
- final RealMatrix hBody = new Array2DRowRealMatrix(gh.getHessian(), false);
- final RealMatrix rot = new Array2DRowRealMatrix(toBodyFrame.getRotation().getMatrix());
- final RealMatrix hInertial = rot.transpose().multiply(hBody).multiply(rot);
- // distribute all partial derivatives in a compact acceleration vector
- final int parameters = mass.getFreeParameters();
- final int order = mass.getOrder();
- final double[] derivatives = new double[1 + parameters];
- final DerivativeStructure[] accDer = new DerivativeStructure[3];
- for (int i = 0; i < 3; ++i) {
- // first element is value of acceleration (i.e. gradient of field)
- derivatives[0] = gInertial[i];
- // next three elements are one row of the Jacobian of acceleration (i.e. Hessian of field)
- derivatives[1] = hInertial.getEntry(i, 0);
- derivatives[2] = hInertial.getEntry(i, 1);
- derivatives[3] = hInertial.getEntry(i, 2);
- // next elements (three or four depending on mass being used or not) are left as 0
- accDer[i] = new DerivativeStructure(parameters, order, derivatives);
- }
- return new FieldVector3D<DerivativeStructure>(accDer);
- }
- /** {@inheritDoc} */
- public FieldVector3D<DerivativeStructure> accelerationDerivatives(final SpacecraftState s, final String paramName)
- throws OrekitException, IllegalArgumentException {
- complainIfNotSupported(paramName);
- // get the position in body frame
- final AbsoluteDate date = s.getDate();
- final Transform fromBodyFrame = bodyFrame.getTransformTo(s.getFrame(), date);
- final Transform toBodyFrame = fromBodyFrame.getInverse();
- final Vector3D position = toBodyFrame.transformPosition(s.getPVCoordinates().getPosition());
- // gradient of the non-central part of the gravity field
- final Vector3D gInertial = fromBodyFrame.transformVector(new Vector3D(gradient(date, position)));
- return new FieldVector3D<DerivativeStructure>(new DerivativeStructure(1, 1, gInertial.getX(), gInertial.getX() / mu),
- new DerivativeStructure(1, 1, gInertial.getY(), gInertial.getY() / mu),
- new DerivativeStructure(1, 1, gInertial.getZ(), gInertial.getZ() / mu));
- }
- }