PenalizedCartesianFuelCost.java
/* Copyright 2022-2025 Romain Serra
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.control.indirect.adjoint.cost;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
/**
* Abstract class for fuel cost with a penalty term proportional to a weight parameter epsilon.
* This is typically used in a continuation method, starting from epsilon equal to 1
* and going towards 0 where the fuel cost is recovered. The point is to enhance convergence.
* The control vector is the normalized (by the upper bound on magnitude) thrust force in propagation frame.
* See the following reference:
* BERTRAND, Régis et EPENOY, Richard. New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation.
* Optimal Control Applications and Methods, 2002, vol. 23, no 4, p. 171-197.
*
* @author Romain Serra
* @since 13.0
* @see CartesianFuelCost
*/
public abstract class PenalizedCartesianFuelCost extends AbstractCartesianCost {
/** Maximum value of thrust force Euclidean norm. */
private final double maximumThrustMagnitude;
/** Penalty weight. */
private final double epsilon;
/**
* Constructor.
*
* @param name adjoint name
* @param massFlowRateFactor mass flow rate factor
* @param maximumThrustMagnitude maximum thrust magnitude
* @param epsilon penalty weight
*/
protected PenalizedCartesianFuelCost(final String name, final double massFlowRateFactor,
final double maximumThrustMagnitude, final double epsilon) {
super(name, massFlowRateFactor);
if (epsilon < 0 || epsilon > 1) {
throw new OrekitException(OrekitMessages.INVALID_PARAMETER_RANGE, "epsilon", epsilon, 0, 1);
}
this.maximumThrustMagnitude = maximumThrustMagnitude;
this.epsilon = epsilon;
}
/** Getter for the penalty weight epsilon.
* @return epsilon
*/
public double getEpsilon() {
return epsilon;
}
/** Getter for maximum thrust magnitude.
* @return maximum thrust
*/
public double getMaximumThrustMagnitude() {
return maximumThrustMagnitude;
}
/**
* Evaluate the penalty term (without the weight), assumed to be a function of the control norm.
* @param controlNorm Euclidean norm of control vector
* @return penalty function
*/
public abstract double evaluatePenaltyFunction(double controlNorm);
/**
* Computes the direction of thrust.
* @param adjointVariables adjoint vector
* @return thrust direction
*/
protected Vector3D getThrustDirection(final double[] adjointVariables) {
return new Vector3D(adjointVariables[3], adjointVariables[4], adjointVariables[5]).normalize();
}
/** {@inheritDoc} */
@Override
public double getHamiltonianContribution(final double[] adjointVariables, final double mass) {
final Vector3D thrustForce = getThrustAccelerationVector(adjointVariables, mass).scalarMultiply(mass);
final double controlNorm = thrustForce.getNorm() / getMaximumThrustMagnitude();
return -(controlNorm + getEpsilon() * evaluatePenaltyFunction(controlNorm)) * getMaximumThrustMagnitude();
}
}