DSSTStateTransitionMatrixGenerator.java
- /* Copyright 2002-2024 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.RealMatrix;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.errors.OrekitException;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.PropagationType;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.integration.AdditionalDerivativesProvider;
- import org.orekit.propagation.integration.CombinedDerivatives;
- import org.orekit.propagation.semianalytical.dsst.forces.DSSTForceModel;
- import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.utils.DoubleArrayDictionary;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- /** Generator for State Transition Matrix.
- * @author Luc Maisonobe
- * @since 11.1
- */
- class DSSTStateTransitionMatrixGenerator implements AdditionalDerivativesProvider {
- /** Space dimension. */
- private static final int SPACE_DIMENSION = 3;
- /** Retrograde factor I.
- * <p>
- * DSST model needs equinoctial orbit as internal representation.
- * Classical equinoctial elements have discontinuities when inclination
- * is close to zero. In this representation, I = +1. <br>
- * To avoid this discontinuity, another representation exists and equinoctial
- * elements can be expressed in a different way, called "retrograde" orbit.
- * This implies I = -1. <br>
- * As Orekit doesn't implement the retrograde orbit, I is always set to +1.
- * But for the sake of consistency with the theory, the retrograde factor
- * has been kept in the formulas.
- * </p>
- */
- private static final int I = 1;
- /** State dimension. */
- public static final int STATE_DIMENSION = 2 * SPACE_DIMENSION;
- /** Name of the Cartesian STM additional state. */
- private final String stmName;
- /** Force models used in propagation. */
- private final List<DSSTForceModel> forceModels;
- /** Attitude provider used in propagation. */
- private final AttitudeProvider attitudeProvider;
- /** Observers for partial derivatives. */
- private final Map<String, DSSTPartialsObserver> partialsObservers;
- /** Mean or osculating. */
- private final PropagationType propagationType;
- /** Simple constructor.
- * @param stmName name of the Cartesian STM additional state
- * @param forceModels force models used in propagation
- * @param attitudeProvider attitude provider used in propagation
- * @param propagationType mean or osculating.
- */
- DSSTStateTransitionMatrixGenerator(final String stmName,
- final List<DSSTForceModel> forceModels,
- final AttitudeProvider attitudeProvider,
- final PropagationType propagationType) {
- this.stmName = stmName;
- this.forceModels = forceModels;
- this.attitudeProvider = attitudeProvider;
- this.propagationType = propagationType;
- this.partialsObservers = new HashMap<>();
- }
- /** Register an observer for partial derivatives.
- * <p>
- * The observer {@link DSSTPartialsObserver#partialsComputed(double[], double[]) partialsComputed}
- * method will be called when partial derivatives are computed, as a side effect of
- * calling {@link #generate(SpacecraftState)}
- * </p>
- * @param name name of the parameter driver this observer is interested in (may be null)
- * @param observer observer to register
- */
- void addObserver(final String name, final DSSTPartialsObserver observer) {
- partialsObservers.put(name, observer);
- }
- /** {@inheritDoc} */
- @Override
- public String getName() {
- return stmName;
- }
- /** {@inheritDoc} */
- @Override
- public int getDimension() {
- return STATE_DIMENSION * STATE_DIMENSION;
- }
- @Override
- @SuppressWarnings("unchecked")
- public void init(final SpacecraftState initialState, final AbsoluteDate target) {
- // initialize short period terms.
- // the propagator will have called the non-field method
- // so just call the field method here
- // This should be a Field copy of the code in DSSTPropagator.beforeIntegration(...)
- // but with just the short period initialization calls
- // See also how the field state is set up in computePartials(...)
- final DSSTGradientConverter converter =
- new DSSTGradientConverter(initialState, attitudeProvider);
- // check if only mean elements must be used
- final PropagationType type = propagationType;
- // initialize all perturbing forces
- for (final DSSTForceModel forceModel : forceModels) {
- final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
- final Gradient[] parameters = converter.getParametersAtStateDate(dsState, forceModel);
- final FieldAuxiliaryElements<Gradient> auxiliaryElements = new FieldAuxiliaryElements<>(dsState.getOrbit(), I);
- forceModel.initializeShortPeriodTerms(auxiliaryElements, type, parameters);
- }
- // if required, insert the special short periodics step handler
- if (type == PropagationType.OSCULATING) {
- // Compute short periodic coefficients for this point
- for (DSSTForceModel forceModel : forceModels) {
- final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
- final Gradient[] parameters = converter.getParametersAtStateDate(dsState, forceModel);
- forceModel.updateShortPeriodTerms(parameters, dsState);
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public boolean yields(final SpacecraftState state) {
- return !state.hasAdditionalState(getName());
- }
- /** Set the initial value of the State Transition Matrix.
- * <p>
- * The returned state must be added to the propagator.
- * </p>
- * @param state initial state
- * @param dYdY0 initial State Transition Matrix ∂Y/∂Y₀,
- * if null (which is the most frequent case), assumed to be 6x6 identity
- * @return state with initial STM (converted to Cartesian ∂C/∂Y₀) added
- */
- SpacecraftState setInitialStateTransitionMatrix(final SpacecraftState state, final RealMatrix dYdY0) {
- if (dYdY0 != null) {
- if (dYdY0.getRowDimension() != STATE_DIMENSION ||
- dYdY0.getColumnDimension() != STATE_DIMENSION) {
- throw new OrekitException(LocalizedCoreFormats.DIMENSIONS_MISMATCH_2x2,
- dYdY0.getRowDimension(), dYdY0.getColumnDimension(),
- STATE_DIMENSION, STATE_DIMENSION);
- }
- }
- // flatten matrix
- final double[] flat = new double[STATE_DIMENSION * STATE_DIMENSION];
- int k = 0;
- for (int i = 0; i < STATE_DIMENSION; ++i) {
- for (int j = 0; j < STATE_DIMENSION; ++j) {
- flat[k++] = dYdY0.getEntry(i, j);
- }
- }
- // set additional state
- return state.addAdditionalState(stmName, flat);
- }
- /** {@inheritDoc} */
- public CombinedDerivatives combinedDerivatives(final SpacecraftState state) {
- final double[] p = state.getAdditionalState(getName());
- final double[] res = new double[p.length];
- // perform matrix multiplication with matrices flatten
- final RealMatrix factor = computePartials(state);
- int index = 0;
- for (int i = 0; i < STATE_DIMENSION; ++i) {
- for (int j = 0; j < STATE_DIMENSION; ++j) {
- double sum = 0;
- for (int k = 0; k < STATE_DIMENSION; ++k) {
- sum += factor.getEntry(i, k) * p[j + k * STATE_DIMENSION];
- }
- res[index++] = sum;
- }
- }
- return new CombinedDerivatives(res, null);
- }
- /** Compute the various partial derivatives.
- * @param state current spacecraft state
- * @return factor matrix
- */
- private RealMatrix computePartials(final SpacecraftState state) {
- // set up containers for partial derivatives
- final RealMatrix factor = MatrixUtils.createRealMatrix(STATE_DIMENSION, STATE_DIMENSION);
- final DoubleArrayDictionary meanElementsPartials = new DoubleArrayDictionary();
- final DSSTGradientConverter converter = new DSSTGradientConverter(state, attitudeProvider);
- // Compute Jacobian
- for (final DSSTForceModel forceModel : forceModels) {
- final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
- final Gradient[] parameters = converter.getParametersAtStateDate(dsState, forceModel);
- final FieldAuxiliaryElements<Gradient> auxiliaryElements = new FieldAuxiliaryElements<>(dsState.getOrbit(), I);
- final Gradient[] meanElementRate = forceModel.getMeanElementRate(dsState, auxiliaryElements, parameters);
- final double[] derivativesA = meanElementRate[0].getGradient();
- final double[] derivativesEx = meanElementRate[1].getGradient();
- final double[] derivativesEy = meanElementRate[2].getGradient();
- final double[] derivativesHx = meanElementRate[3].getGradient();
- final double[] derivativesHy = meanElementRate[4].getGradient();
- final double[] derivativesL = meanElementRate[5].getGradient();
- // update Jacobian with respect to state
- addToRow(derivativesA, 0, factor);
- addToRow(derivativesEx, 1, factor);
- addToRow(derivativesEy, 2, factor);
- addToRow(derivativesHx, 3, factor);
- addToRow(derivativesHy, 4, factor);
- addToRow(derivativesL, 5, factor);
- // partials derivatives with respect to parameters
- int paramsIndex = converter.getFreeStateParameters();
- for (ParameterDriver driver : forceModel.getParametersDrivers()) {
- if (driver.isSelected()) {
- // for each span (for each estimated value) corresponding name is added
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- // get the partials derivatives for this driver
- DoubleArrayDictionary.Entry entry = meanElementsPartials.getEntry(span.getData());
- if (entry == null) {
- // create an entry filled with zeroes
- meanElementsPartials.put(span.getData(), new double[STATE_DIMENSION]);
- entry = meanElementsPartials.getEntry(span.getData());
- }
- // add the contribution of the current force model
- entry.increment(new double[] {
- derivativesA[paramsIndex], derivativesEx[paramsIndex], derivativesEy[paramsIndex],
- derivativesHx[paramsIndex], derivativesHy[paramsIndex], derivativesL[paramsIndex]
- });
- ++paramsIndex;
- }
- }
- }
- }
- // notify observers
- for (Map.Entry<String, DSSTPartialsObserver> observersEntry : partialsObservers.entrySet()) {
- final DoubleArrayDictionary.Entry entry = meanElementsPartials.getEntry(observersEntry.getKey());
- observersEntry.getValue().partialsComputed(state, factor, entry == null ? new double[STATE_DIMENSION] : entry.getValue());
- }
- return factor;
- }
- /** Fill Jacobians rows.
- * @param derivatives derivatives of a component
- * @param index component index (0 for a, 1 for ex, 2 for ey, 3 for hx, 4 for hy, 5 for l)
- * @param factor Jacobian of mean elements rate with respect to mean elements
- */
- private void addToRow(final double[] derivatives, final int index, final RealMatrix factor) {
- for (int i = 0; i < 6; i++) {
- factor.addToEntry(index, i, derivatives[i]);
- }
- }
- /** Interface for observing partials derivatives. */
- public interface DSSTPartialsObserver {
- /** Callback called when partial derivatives have been computed.
- * @param state current spacecraft state
- * @param factor factor matrix
- * @param meanElementsPartials partials derivatives of mean elements rates with respect to the parameter driver
- * that was registered (zero if no parameters were not selected or parameter is unknown)
- */
- void partialsComputed(SpacecraftState state, RealMatrix factor, double[] meanElementsPartials);
- }
- }