KalmanEstimationCommon.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.sequential;
import org.hipparchus.filtering.kalman.ProcessEstimate;
import org.hipparchus.linear.ArrayRealVector;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
import org.orekit.estimation.measurements.EstimatedMeasurement;
import org.orekit.propagation.Propagator;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.conversion.PropagatorBuilder;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterDriversList;
import org.orekit.utils.ParameterDriversList.DelegatingDriver;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/** Class defining the process model dynamics to use with a {@link KalmanEstimator}.
* @author Romain Gerbaud
* @author Maxime Journot
* @since 9.2
*/
class KalmanEstimationCommon implements KalmanEstimation {
/** Builders for propagators. */
private final List<PropagatorBuilder> builders;
/** Estimated orbital parameters. */
private final ParameterDriversList allEstimatedOrbitalParameters;
/** Estimated propagation drivers. */
private final ParameterDriversList allEstimatedPropagationParameters;
/** Per-builder estimated orbita parameters drivers.
* @since 11.1
*/
private final ParameterDriversList[] estimatedOrbitalParameters;
/** Per-builder estimated propagation drivers. */
private final ParameterDriversList[] estimatedPropagationParameters;
/** Estimated measurements parameters. */
private final ParameterDriversList estimatedMeasurementsParameters;
/** Start columns for each estimated orbit. */
private final int[] orbitsStartColumns;
/** End columns for each estimated orbit. */
private final int[] orbitsEndColumns;
/** Map for propagation parameters columns. */
private final Map<String, Integer> propagationParameterColumns;
/** Map for measurements parameters columns. */
private final Map<String, Integer> measurementParameterColumns;
/** Providers for covariance matrices. */
private final List<CovarianceMatrixProvider> covarianceMatricesProviders;
/** Process noise matrix provider for measurement parameters. */
private final CovarianceMatrixProvider measurementProcessNoiseMatrix;
/** Indirection arrays to extract the noise components for estimated parameters. */
private final int[][] covarianceIndirection;
/** Scaling factors. */
private final double[] scale;
/** Current corrected estimate. */
private ProcessEstimate correctedEstimate;
/** Current number of measurement. */
private int currentMeasurementNumber;
/** Reference date. */
private final AbsoluteDate referenceDate;
/** Current date. */
private AbsoluteDate currentDate;
/** Predicted spacecraft states. */
private final SpacecraftState[] predictedSpacecraftStates;
/** Corrected spacecraft states. */
private final SpacecraftState[] correctedSpacecraftStates;
/** Predicted measurement. */
private EstimatedMeasurement<?> predictedMeasurement;
/** Corrected measurement. */
private EstimatedMeasurement<?> correctedMeasurement;
/** Kalman process model constructor.
* @param propagatorBuilders propagators builders used to evaluate the orbits.
* @param covarianceMatricesProviders providers for covariance matrices
* @param estimatedMeasurementParameters measurement parameters to estimate
* @param measurementProcessNoiseMatrix provider for measurement process noise matrix
*/
protected KalmanEstimationCommon(final List<PropagatorBuilder> propagatorBuilders,
final List<CovarianceMatrixProvider> covarianceMatricesProviders,
final ParameterDriversList estimatedMeasurementParameters,
final CovarianceMatrixProvider measurementProcessNoiseMatrix) {
this.builders = propagatorBuilders;
this.estimatedMeasurementsParameters = estimatedMeasurementParameters;
this.measurementParameterColumns = new HashMap<>(estimatedMeasurementsParameters.getDrivers().size());
this.currentMeasurementNumber = 0;
this.referenceDate = propagatorBuilders.get(0).getInitialOrbitDate();
this.currentDate = referenceDate;
final Map<String, Integer> orbitalParameterColumns = new HashMap<>(6 * builders.size());
orbitsStartColumns = new int[builders.size()];
orbitsEndColumns = new int[builders.size()];
int columns = 0;
allEstimatedOrbitalParameters = new ParameterDriversList();
estimatedOrbitalParameters = new ParameterDriversList[builders.size()];
for (int k = 0; k < builders.size(); ++k) {
estimatedOrbitalParameters[k] = new ParameterDriversList();
orbitsStartColumns[k] = columns;
final String suffix = propagatorBuilders.size() > 1 ? "[" + k + "]" : null;
for (final ParameterDriver driver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
if (driver.getReferenceDate() == null) {
driver.setReferenceDate(currentDate);
}
if (suffix != null && !driver.getName().endsWith(suffix)) {
// we add suffix only conditionally because the method may already have been called
// and suffixes may have already been appended
driver.setName(driver.getName() + suffix);
}
if (driver.isSelected()) {
allEstimatedOrbitalParameters.add(driver);
estimatedOrbitalParameters[k].add(driver);
orbitalParameterColumns.put(driver.getName(), columns++);
}
}
orbitsEndColumns[k] = columns;
}
// Gather all the propagation drivers names in a list
allEstimatedPropagationParameters = new ParameterDriversList();
estimatedPropagationParameters = new ParameterDriversList[builders.size()];
final List<String> estimatedPropagationParametersNames = new ArrayList<>();
for (int k = 0; k < builders.size(); ++k) {
estimatedPropagationParameters[k] = new ParameterDriversList();
for (final ParameterDriver driver : builders.get(k).getPropagationParametersDrivers().getDrivers()) {
if (driver.getReferenceDate() == null) {
driver.setReferenceDate(currentDate);
}
if (driver.isSelected()) {
allEstimatedPropagationParameters.add(driver);
estimatedPropagationParameters[k].add(driver);
final String driverName = driver.getName();
// Add the driver name if it has not been added yet
if (!estimatedPropagationParametersNames.contains(driverName)) {
estimatedPropagationParametersNames.add(driverName);
}
}
}
}
estimatedPropagationParametersNames.sort(Comparator.naturalOrder());
// Populate the map of propagation drivers' columns and update the total number of columns
propagationParameterColumns = new HashMap<>(estimatedPropagationParametersNames.size());
for (final String driverName : estimatedPropagationParametersNames) {
propagationParameterColumns.put(driverName, columns);
++columns;
}
// Populate the map of measurement drivers' columns and update the total number of columns
for (final ParameterDriver parameter : estimatedMeasurementsParameters.getDrivers()) {
if (parameter.getReferenceDate() == null) {
parameter.setReferenceDate(currentDate);
}
measurementParameterColumns.put(parameter.getName(), columns);
++columns;
}
// Store providers for process noise matrices
this.covarianceMatricesProviders = covarianceMatricesProviders;
this.measurementProcessNoiseMatrix = measurementProcessNoiseMatrix;
this.covarianceIndirection = new int[builders.size()][columns];
for (int k = 0; k < covarianceIndirection.length; ++k) {
final ParameterDriversList orbitDrivers = builders.get(k).getOrbitalParametersDrivers();
final ParameterDriversList parametersDrivers = builders.get(k).getPropagationParametersDrivers();
Arrays.fill(covarianceIndirection[k], -1);
int i = 0;
for (final ParameterDriver driver : orbitDrivers.getDrivers()) {
final Integer c = orbitalParameterColumns.get(driver.getName());
if (c != null) {
covarianceIndirection[k][i++] = c;
}
}
for (final ParameterDriver driver : parametersDrivers.getDrivers()) {
final Integer c = propagationParameterColumns.get(driver.getName());
if (c != null) {
covarianceIndirection[k][i++] = c;
}
}
for (final ParameterDriver driver : estimatedMeasurementParameters.getDrivers()) {
final Integer c = measurementParameterColumns.get(driver.getName());
if (c != null) {
covarianceIndirection[k][i++] = c;
}
}
}
// Compute the scale factors
this.scale = new double[columns];
int index = 0;
for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
scale[index++] = driver.getScale();
}
for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
scale[index++] = driver.getScale();
}
for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
scale[index++] = driver.getScale();
}
// Populate predicted and corrected states
this.predictedSpacecraftStates = new SpacecraftState[builders.size()];
for (int i = 0; i < builders.size(); ++i) {
predictedSpacecraftStates[i] = builders.get(i).buildPropagator().getInitialState();
}
this.correctedSpacecraftStates = predictedSpacecraftStates.clone();
// Initialize the estimated normalized state and fill its values
final RealVector correctedState = MatrixUtils.createRealVector(columns);
int p = 0;
for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
correctedState.setEntry(p++, driver.getNormalizedValue());
}
for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
correctedState.setEntry(p++, driver.getNormalizedValue());
}
for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
correctedState.setEntry(p++, driver.getNormalizedValue());
}
// Set up initial covariance
final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(columns, columns);
for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {
// Number of estimated measurement parameters
final int nbMeas = estimatedMeasurementParameters.getNbParams();
// Number of estimated dynamic parameters (orbital + propagation)
final int nbDyn = orbitsEndColumns[k] - orbitsStartColumns[k] +
estimatedPropagationParameters[k].getNbParams();
// Covariance matrix
final RealMatrix noiseK = MatrixUtils.createRealMatrix(nbDyn + nbMeas, nbDyn + nbMeas);
if (nbDyn > 0) {
final RealMatrix noiseP = covarianceMatricesProviders.get(k).
getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
noiseK.setSubMatrix(noiseP.getData(), 0, 0);
}
if (measurementProcessNoiseMatrix != null) {
final RealMatrix noiseM = measurementProcessNoiseMatrix.
getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
noiseK.setSubMatrix(noiseM.getData(), nbDyn, nbDyn);
}
KalmanEstimatorUtil.checkDimension(noiseK.getRowDimension(),
builders.get(k).getOrbitalParametersDrivers(),
builders.get(k).getPropagationParametersDrivers(),
estimatedMeasurementsParameters);
final int[] indK = covarianceIndirection[k];
for (int i = 0; i < indK.length; ++i) {
if (indK[i] >= 0) {
for (int j = 0; j < indK.length; ++j) {
if (indK[j] >= 0) {
physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
}
}
}
}
}
final RealMatrix correctedCovariance = KalmanEstimatorUtil.normalizeCovarianceMatrix(physicalProcessNoise, scale);
correctedEstimate = new ProcessEstimate(0.0, correctedState, correctedCovariance);
}
/** {@inheritDoc} */
@Override
public RealMatrix getPhysicalStateTransitionMatrix() {
// Un-normalize the state transition matrix (φ) from Hipparchus and return it.
// φ is an mxm matrix where m = nbOrb + nbPropag + nbMeas
// For each element [i,j] of normalized φ (φn), the corresponding physical value is:
// φ[i,j] = φn[i,j] * scale[i] / scale[j]
return correctedEstimate.getStateTransitionMatrix() == null ?
null : KalmanEstimatorUtil.unnormalizeStateTransitionMatrix(correctedEstimate.getStateTransitionMatrix(), scale);
}
/** {@inheritDoc} */
@Override
public RealMatrix getPhysicalMeasurementJacobian() {
// Un-normalize the measurement matrix (H) from Hipparchus and return it.
// H is an nxm matrix where:
// - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
// - n is the size of the measurement being processed by the filter
// For each element [i,j] of normalized H (Hn) the corresponding physical value is:
// H[i,j] = Hn[i,j] * σ[i] / scale[j]
return correctedEstimate.getMeasurementJacobian() == null ?
null : KalmanEstimatorUtil.unnormalizeMeasurementJacobian(correctedEstimate.getMeasurementJacobian(),
scale,
correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation());
}
/** {@inheritDoc} */
@Override
public RealMatrix getPhysicalInnovationCovarianceMatrix() {
// Un-normalize the innovation covariance matrix (S) from Hipparchus and return it.
// S is an nxn matrix where n is the size of the measurement being processed by the filter
// For each element [i,j] of normalized S (Sn) the corresponding physical value is:
// S[i,j] = Sn[i,j] * σ[i] * σ[j]
return correctedEstimate.getInnovationCovariance() == null ?
null : KalmanEstimatorUtil.unnormalizeInnovationCovarianceMatrix(correctedEstimate.getInnovationCovariance(),
predictedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation());
}
/** {@inheritDoc} */
@Override
public RealMatrix getPhysicalKalmanGain() {
// Un-normalize the Kalman gain (K) from Hipparchus and return it.
// K is an mxn matrix where:
// - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
// - n is the size of the measurement being processed by the filter
// For each element [i,j] of normalized K (Kn) the corresponding physical value is:
// K[i,j] = Kn[i,j] * scale[i] / σ[j]
return correctedEstimate.getKalmanGain() == null ?
null : KalmanEstimatorUtil.unnormalizeKalmanGainMatrix(correctedEstimate.getKalmanGain(),
scale,
correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation());
}
/** {@inheritDoc} */
@Override
public SpacecraftState[] getPredictedSpacecraftStates() {
return predictedSpacecraftStates.clone();
}
/** {@inheritDoc} */
@Override
public SpacecraftState[] getCorrectedSpacecraftStates() {
return correctedSpacecraftStates.clone();
}
/** {@inheritDoc} */
@Override
public int getCurrentMeasurementNumber() {
return currentMeasurementNumber;
}
/** {@inheritDoc} */
@Override
public AbsoluteDate getCurrentDate() {
return currentDate;
}
/** {@inheritDoc} */
@Override
public EstimatedMeasurement<?> getPredictedMeasurement() {
return predictedMeasurement;
}
/** {@inheritDoc} */
@Override
public EstimatedMeasurement<?> getCorrectedMeasurement() {
return correctedMeasurement;
}
/** {@inheritDoc} */
@Override
public RealVector getPhysicalEstimatedState() {
// Method {@link ParameterDriver#getValue()} is used to get
// the physical values of the state.
// The scales'array is used to get the size of the state vector
final RealVector physicalEstimatedState = new ArrayRealVector(scale.length);
int i = 0;
for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
physicalEstimatedState.setEntry(i++, driver.getValue());
}
for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
physicalEstimatedState.setEntry(i++, driver.getValue());
}
for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
physicalEstimatedState.setEntry(i++, driver.getValue());
}
return physicalEstimatedState;
}
/** {@inheritDoc} */
@Override
public RealMatrix getPhysicalEstimatedCovarianceMatrix() {
// Un-normalize the estimated covariance matrix (P) from Hipparchus and return it.
// The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
// For each element [i,j] of P the corresponding normalized value is:
// Pn[i,j] = P[i,j] / (scale[i]*scale[j])
// Consequently: P[i,j] = Pn[i,j] * scale[i] * scale[j]
return KalmanEstimatorUtil.unnormalizeCovarianceMatrix(correctedEstimate.getCovariance(), scale);
}
/** {@inheritDoc} */
@Override
public ParameterDriversList getEstimatedOrbitalParameters() {
return allEstimatedOrbitalParameters;
}
/** {@inheritDoc} */
@Override
public ParameterDriversList getEstimatedPropagationParameters() {
return allEstimatedPropagationParameters;
}
/** {@inheritDoc} */
@Override
public ParameterDriversList getEstimatedMeasurementsParameters() {
return estimatedMeasurementsParameters;
}
/** Get the current corrected estimate.
* @return current corrected estimate
*/
public ProcessEstimate getEstimate() {
return correctedEstimate;
}
/** Getter for the propagators.
* @return the propagators
*/
public List<PropagatorBuilder> getBuilders() {
return builders;
}
/** Get the propagators estimated with the values set in the propagators builders.
* @return propagators based on the current values in the builder
*/
public Propagator[] getEstimatedPropagators() {
// Return propagators built with current instantiation of the propagator builders
final Propagator[] propagators = new Propagator[getBuilders().size()];
for (int k = 0; k < getBuilders().size(); ++k) {
propagators[k] = getBuilders().get(k).buildPropagator();
}
return propagators;
}
protected RealMatrix getNormalizedProcessNoise(final int stateDimension) {
final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(stateDimension, stateDimension);
for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {
// Number of estimated measurement parameters
final int nbMeas = estimatedMeasurementsParameters.getNbParams();
// Number of estimated dynamic parameters (orbital + propagation)
final int nbDyn = orbitsEndColumns[k] - orbitsStartColumns[k] +
estimatedPropagationParameters[k].getNbParams();
// Covariance matrix
final RealMatrix noiseK = MatrixUtils.createRealMatrix(nbDyn + nbMeas, nbDyn + nbMeas);
if (nbDyn > 0) {
final RealMatrix noiseP = covarianceMatricesProviders.get(k).
getProcessNoiseMatrix(correctedSpacecraftStates[k],
predictedSpacecraftStates[k]);
noiseK.setSubMatrix(noiseP.getData(), 0, 0);
}
if (measurementProcessNoiseMatrix != null) {
final RealMatrix noiseM = measurementProcessNoiseMatrix.
getProcessNoiseMatrix(correctedSpacecraftStates[k],
predictedSpacecraftStates[k]);
noiseK.setSubMatrix(noiseM.getData(), nbDyn, nbDyn);
}
KalmanEstimatorUtil.checkDimension(noiseK.getRowDimension(),
builders.get(k).getOrbitalParametersDrivers(),
builders.get(k).getPropagationParametersDrivers(),
estimatedMeasurementsParameters);
final int[] indK = covarianceIndirection[k];
for (int i = 0; i < indK.length; ++i) {
if (indK[i] >= 0) {
for (int j = 0; j < indK.length; ++j) {
if (indK[j] >= 0) {
physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
}
}
}
}
}
return KalmanEstimatorUtil.normalizeCovarianceMatrix(physicalProcessNoise, scale);
}
protected int[] getOrbitsStartColumns() {
return orbitsStartColumns;
}
protected Map<String, Integer> getPropagationParameterColumns() {
return propagationParameterColumns;
}
protected Map<String, Integer> getMeasurementParameterColumns() {
return measurementParameterColumns;
}
protected ParameterDriversList[] getEstimatedPropagationParametersArray() {
return estimatedPropagationParameters;
}
protected ParameterDriversList[] getEstimatedOrbitalParametersArray() {
return estimatedOrbitalParameters;
}
protected int[][] getCovarianceIndirection() {
return covarianceIndirection;
}
protected double[] getScale() {
return scale;
}
protected ProcessEstimate getCorrectedEstimate() {
return correctedEstimate;
}
protected void setCorrectedEstimate(final ProcessEstimate correctedEstimate) {
this.correctedEstimate = correctedEstimate;
}
protected AbsoluteDate getReferenceDate() {
return referenceDate;
}
protected void incrementCurrentMeasurementNumber() {
currentMeasurementNumber += 1;
}
public void setCurrentDate(final AbsoluteDate currentDate) {
this.currentDate = currentDate;
}
protected void setCorrectedSpacecraftState(final SpacecraftState correctedSpacecraftState, final int index) {
this.correctedSpacecraftStates[index] = correctedSpacecraftState;
}
protected void setPredictedSpacecraftState(final SpacecraftState predictedSpacecraftState, final int index) {
this.predictedSpacecraftStates[index] = predictedSpacecraftState;
}
protected void setPredictedMeasurement(final EstimatedMeasurement<?> predictedMeasurement) {
this.predictedMeasurement = predictedMeasurement;
}
protected void setCorrectedMeasurement(final EstimatedMeasurement<?> correctedMeasurement) {
this.correctedMeasurement = correctedMeasurement;
}
}