FieldGHmsjPolynomials.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.semianalytical.dsst.utilities;
import org.hipparchus.Field;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.FastMath;
/** Compute the G<sub>ms</sub><sup>j</sup> and the H<sub>ms</sub><sup>j</sup>
* polynomials in the equinoctial elements h, k and the direction cosines α and β
* and their partial derivatives with respect to k, h, α and β.
* <p>
* The expressions used are equations 2.7.5-(1)(2) from the Danielson paper.
* </p>
* @author Romain Di Costanzo
* @author Bryan Cazabonne (field translation)
* @param <T> type of the field elements
*/
public class FieldGHmsjPolynomials <T extends CalculusFieldElement<T>> {
/** C<sub>j</sub>(k, h), S<sub>j</sub>(k, h) coefficient.
* (k, h) are the (x, y) component of the eccentricity vector in equinoctial elements
*/
private final FieldCjSjCoefficient<T> cjsjKH;
/** C<sub>j</sub>(α, β), S<sub>j</sub>(α, β) coefficient.
* (α, β) are the direction cosines
*/
private final FieldCjSjCoefficient<T> cjsjAB;
/** Is the orbit represented as a retrograde orbit.
* I = -1 if yes, +1 otherwise.
*/
private int I;
/** Zero for initialization. */
private final T zero;
/** Create a set of G<sub>ms</sub><sup>j</sup> and H<sub>ms</sub><sup>j</sup> polynomials.
* @param k X component of the eccentricity vector
* @param h Y component of the eccentricity vector
* @param alpha direction cosine α
* @param beta direction cosine β
* @param retroFactor -1 if the orbit is represented as retrograde, +1 otherwise
* @param field field element
**/
public FieldGHmsjPolynomials(final T k, final T h,
final T alpha, final T beta,
final int retroFactor,
final Field<T> field) {
zero = field.getZero();
this.cjsjKH = new FieldCjSjCoefficient<>(k, h, field);
this.cjsjAB = new FieldCjSjCoefficient<>(alpha, beta, field);
this.I = retroFactor;
}
/** Get the G<sub>ms</sub><sup>j</sup> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return the G<sub>ms</sub><sup>j</sup>
*/
public T getGmsj(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T gms = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
gms = cjsjKH.getCj(sMj).multiply(cjsjAB.getCj(mMis)).
subtract(cjsjKH.getSj(sMj).multiply(cjsjAB.getSj(mMis)).multiply(sgn(s - j)).multiply(I));
} else {
final int sMim = FastMath.abs(s - I * m);
gms = cjsjKH.getCj(sMj).multiply(cjsjAB.getCj(sMim)).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getSj(sMim)).multiply(sgn(s - j)).multiply(sgn(s - m)));
}
return gms;
}
/** Get the H<sub>ms</sub><sup>j</sup> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return the H<sub>ms</sub><sup>j</sup>
*/
public T getHmsj(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T hms = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
hms = cjsjKH.getCj(sMj).multiply(cjsjAB.getSj(mMis)).multiply(I).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getCj(mMis)).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
hms = cjsjKH.getCj(sMj).multiply(cjsjAB.getSj(sMim)).multiply(-sgn(s - m)).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getCj(sMim)).multiply(sgn(s - j)));
}
return hms;
}
/** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>k</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dG<sub>ms</sub><sup>j</sup> / d<sub>k</sub>
*/
public T getdGmsdk(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dGmsdk = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dGmsdk = cjsjKH.getDcjDk(sMj).multiply(cjsjAB.getCj(mMis)).
subtract(cjsjKH.getDsjDk(sMj).multiply(cjsjAB.getSj(mMis)).multiply(I).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dGmsdk = cjsjKH.getDcjDk(sMj).multiply(cjsjAB.getCj(sMim)).
add(cjsjKH.getDsjDk(sMj).multiply(cjsjAB.getSj(sMim)).multiply(sgn(s - m)).multiply(sgn(s - j)));
}
return dGmsdk;
}
/** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>h</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dG<sub>ms</sub><sup>j</sup> / d<sub>h</sub>
*/
public T getdGmsdh(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dGmsdh = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dGmsdh = cjsjKH.getDcjDh(sMj).multiply(cjsjAB.getCj(mMis)).
subtract(cjsjKH.getDsjDh(sMj).multiply(cjsjAB.getSj(mMis)).multiply(I).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dGmsdh = cjsjKH.getDcjDh(sMj).multiply(cjsjAB.getCj(sMim)).
add(cjsjKH.getDsjDh(sMj).multiply(cjsjAB.getSj(sMim)).multiply(sgn(s - m)).multiply(sgn(s - j)));
}
return dGmsdh;
}
/** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>α</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dG<sub>ms</sub><sup>j</sup> / d<sub>α</sub>
*/
public T getdGmsdAlpha(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dGmsdAl = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dGmsdAl = cjsjKH.getCj(sMj).multiply(cjsjAB.getDcjDk(mMis)).
subtract(cjsjKH.getSj(sMj).multiply(cjsjAB.getDsjDk(mMis)).multiply(I).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dGmsdAl = cjsjKH.getCj(sMj).multiply(cjsjAB.getDcjDk(sMim)).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getDsjDk(sMim)).multiply(sgn(s - j)).multiply(sgn(s - m)));
}
return dGmsdAl;
}
/** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>β</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dG<sub>ms</sub><sup>j</sup> / d<sub>β</sub>
*/
public T getdGmsdBeta(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dGmsdBe = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dGmsdBe = cjsjKH.getCj(sMj).multiply(cjsjAB.getDcjDh(mMis)).
subtract(cjsjKH.getSj(sMj).multiply(cjsjAB.getDsjDh(mMis)).multiply(I).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dGmsdBe = cjsjKH.getCj(sMj).multiply(cjsjAB.getDcjDh(sMim)).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getDsjDh(sMim)).multiply(sgn(s - j)).multiply(sgn(s - m)));
}
return dGmsdBe;
}
/** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>k</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dH<sub>ms</sub><sup>j</sup> / d<sub>k</sub>
*/
public T getdHmsdk(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dHmsdk = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dHmsdk = cjsjKH.getDcjDk(sMj).multiply(cjsjAB.getSj(mMis)).multiply(I).
add(cjsjKH.getDsjDk(sMj).multiply(cjsjAB.getCj(mMis)).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dHmsdk = cjsjKH.getDcjDk(sMj).multiply(cjsjAB.getSj(sMim)).multiply(-sgn(s - m)).
add(cjsjKH.getDsjDk(sMj).multiply(cjsjAB.getCj(sMim)).multiply(sgn(s - j)));
}
return dHmsdk;
}
/** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>h</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dH<sub>ms</sub><sup>j</sup> / d<sub>h</sub>
*/
public T getdHmsdh(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dHmsdh = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dHmsdh = cjsjKH.getDcjDh(sMj).multiply(cjsjAB.getSj(mMis)).multiply(I).
add(cjsjKH.getDsjDh(sMj).multiply(cjsjAB.getCj(mMis)).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dHmsdh = cjsjKH.getDcjDh(sMj).multiply(cjsjAB.getSj(sMim)).multiply(-sgn(s - m)).
add(cjsjKH.getDsjDh(sMj).multiply(cjsjAB.getCj(sMim)).multiply(sgn(s - j)));
}
return dHmsdh;
}
/** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>α</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dH<sub>ms</sub><sup>j</sup> / d<sub>α</sub>
*/
public T getdHmsdAlpha(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dHmsdAl = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dHmsdAl = cjsjKH.getCj(sMj).multiply(cjsjAB.getDsjDk(mMis)).multiply(I).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getDcjDk(mMis)).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dHmsdAl = cjsjKH.getCj(sMj).multiply(cjsjAB.getDsjDk(sMim)).multiply(-sgn(s - m)).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getDcjDk(sMim)).multiply(sgn(s - j)));
}
return dHmsdAl;
}
/** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>β</sub> coefficient.
* @param m m subscript
* @param s s subscript
* @param j order
* @return dH<sub>ms</sub><sup>j</sup> / d<sub>β</sub>
*/
public T getdHmsdBeta(final int m, final int s, final int j) {
final int sMj = FastMath.abs(s - j);
T dHmsdBe = zero;
if (FastMath.abs(s) <= m) {
final int mMis = m - I * s;
dHmsdBe = cjsjKH.getCj(sMj).multiply(cjsjAB.getDsjDh(mMis)).multiply(I).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getDcjDh(mMis)).multiply(sgn(s - j)));
} else {
final int sMim = FastMath.abs(s - I * m);
dHmsdBe = cjsjKH.getCj(sMj).multiply(cjsjAB.getDsjDh(sMim)).multiply(-sgn(s - m)).
add(cjsjKH.getSj(sMj).multiply(cjsjAB.getDcjDh(sMim)).multiply(sgn(s - j)));
}
return dHmsdBe;
}
/** Get the sign of an integer.
* @param i number on which evaluation is done
* @return -1 or +1 depending on sign of i
*/
private int sgn(final int i) {
return (i < 0) ? -1 : 1;
}
}