KeplerianOrbit.java

  1. /* Copyright 2002-2024 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.orbits;

  18. import java.io.Serializable;

  19. import org.hipparchus.analysis.differentiation.UnivariateDerivative1;
  20. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  21. import org.hipparchus.util.FastMath;
  22. import org.hipparchus.util.SinCos;
  23. import org.orekit.annotation.DefaultDataContext;
  24. import org.orekit.data.DataContext;
  25. import org.orekit.errors.OrekitException;
  26. import org.orekit.errors.OrekitIllegalArgumentException;
  27. import org.orekit.errors.OrekitInternalError;
  28. import org.orekit.errors.OrekitMessages;
  29. import org.orekit.frames.Frame;
  30. import org.orekit.time.AbsoluteDate;
  31. import org.orekit.utils.PVCoordinates;
  32. import org.orekit.utils.TimeStampedPVCoordinates;


  33. /**
  34.  * This class handles traditional Keplerian orbital parameters.

  35.  * <p>
  36.  * The parameters used internally are the classical Keplerian elements:
  37.  *   <pre>
  38.  *     a
  39.  *     e
  40.  *     i
  41.  *     ω
  42.  *     Ω
  43.  *     v
  44.  *   </pre>
  45.  * where ω stands for the Perigee Argument, Ω stands for the
  46.  * Right Ascension of the Ascending Node and v stands for the true anomaly.
  47.  *
  48.  * <p>
  49.  * This class supports hyperbolic orbits, using the convention that semi major
  50.  * axis is negative for such orbits (and of course eccentricity is greater than 1).
  51.  * </p>
  52.  * <p>
  53.  * When orbit is either equatorial or circular, some Keplerian elements
  54.  * (more precisely ω and Ω) become ambiguous so this class should not
  55.  * be used for such orbits. For this reason, {@link EquinoctialOrbit equinoctial
  56.  * orbits} is the recommended way to represent orbits.
  57.  * </p>

  58.  * <p>
  59.  * The instance <code>KeplerianOrbit</code> is guaranteed to be immutable.
  60.  * </p>
  61.  * @see     Orbit
  62.  * @see    CircularOrbit
  63.  * @see    CartesianOrbit
  64.  * @see    EquinoctialOrbit
  65.  * @author Luc Maisonobe
  66.  * @author Guylaine Prat
  67.  * @author Fabien Maussion
  68.  * @author V&eacute;ronique Pommier-Maurussane
  69.  */
  70. public class KeplerianOrbit extends Orbit implements PositionAngleBased {

  71.     /** Serializable UID. */
  72.     private static final long serialVersionUID = 20170414L;

  73.     /** Name of the eccentricity parameter. */
  74.     private static final String ECCENTRICITY = "eccentricity";

  75.     /** Semi-major axis (m). */
  76.     private final double a;

  77.     /** Eccentricity. */
  78.     private final double e;

  79.     /** Inclination (rad). */
  80.     private final double i;

  81.     /** Perigee Argument (rad). */
  82.     private final double pa;

  83.     /** Right Ascension of Ascending Node (rad). */
  84.     private final double raan;

  85.     /** True anomaly (rad). */
  86.     private final double v;

  87.     /** Semi-major axis derivative (m/s). */
  88.     private final double aDot;

  89.     /** Eccentricity derivative. */
  90.     private final double eDot;

  91.     /** Inclination derivative (rad/s). */
  92.     private final double iDot;

  93.     /** Perigee Argument derivative (rad/s). */
  94.     private final double paDot;

  95.     /** Right Ascension of Ascending Node derivative (rad/s). */
  96.     private final double raanDot;

  97.     /** True anomaly derivative (rad/s). */
  98.     private final double vDot;

  99.     /** Partial Cartesian coordinates (position and velocity are valid, acceleration may be missing). */
  100.     private transient PVCoordinates partialPV;

  101.     /** Creates a new instance.
  102.      * @param a  semi-major axis (m), negative for hyperbolic orbits
  103.      * @param e eccentricity (positive or equal to 0)
  104.      * @param i inclination (rad)
  105.      * @param pa perigee argument (ω, rad)
  106.      * @param raan right ascension of ascending node (Ω, rad)
  107.      * @param anomaly mean, eccentric or true anomaly (rad)
  108.      * @param type type of anomaly
  109.      * @param frame the frame in which the parameters are defined
  110.      * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
  111.      * @param date date of the orbital parameters
  112.      * @param mu central attraction coefficient (m³/s²)
  113.      * @exception IllegalArgumentException if frame is not a {@link
  114.      * Frame#isPseudoInertial pseudo-inertial frame} or a and e don't match for hyperbolic orbits,
  115.      * or v is out of range for hyperbolic orbits
  116.      */
  117.     public KeplerianOrbit(final double a, final double e, final double i,
  118.                           final double pa, final double raan, final double anomaly,
  119.                           final PositionAngleType type,
  120.                           final Frame frame, final AbsoluteDate date, final double mu)
  121.         throws IllegalArgumentException {
  122.         this(a, e, i, pa, raan, anomaly,
  123.              Double.NaN, Double.NaN, Double.NaN, Double.NaN, Double.NaN, Double.NaN,
  124.              type, frame, date, mu);
  125.     }

  126.     /** Creates a new instance.
  127.      * @param a  semi-major axis (m), negative for hyperbolic orbits
  128.      * @param e eccentricity (positive or equal to 0)
  129.      * @param i inclination (rad)
  130.      * @param pa perigee argument (ω, rad)
  131.      * @param raan right ascension of ascending node (Ω, rad)
  132.      * @param anomaly mean, eccentric or true anomaly (rad)
  133.      * @param aDot  semi-major axis derivative (m/s)
  134.      * @param eDot eccentricity derivative
  135.      * @param iDot inclination derivative (rad/s)
  136.      * @param paDot perigee argument derivative (rad/s)
  137.      * @param raanDot right ascension of ascending node derivative (rad/s)
  138.      * @param anomalyDot mean, eccentric or true anomaly derivative (rad/s)
  139.      * @param type type of anomaly
  140.      * @param frame the frame in which the parameters are defined
  141.      * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
  142.      * @param date date of the orbital parameters
  143.      * @param mu central attraction coefficient (m³/s²)
  144.      * @exception IllegalArgumentException if frame is not a {@link
  145.      * Frame#isPseudoInertial pseudo-inertial frame} or a and e don't match for hyperbolic orbits,
  146.      * or v is out of range for hyperbolic orbits
  147.      * @since 9.0
  148.      */
  149.     public KeplerianOrbit(final double a, final double e, final double i,
  150.                           final double pa, final double raan, final double anomaly,
  151.                           final double aDot, final double eDot, final double iDot,
  152.                           final double paDot, final double raanDot, final double anomalyDot,
  153.                           final PositionAngleType type,
  154.                           final Frame frame, final AbsoluteDate date, final double mu)
  155.         throws IllegalArgumentException {
  156.         super(frame, date, mu);

  157.         if (a * (1 - e) < 0) {
  158.             throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_A_E_MISMATCH_WITH_CONIC_TYPE, a, e);
  159.         }

  160.         // Checking eccentricity range
  161.         checkParameterRangeInclusive(ECCENTRICITY, e, 0.0, Double.POSITIVE_INFINITY);

  162.         this.a       = a;
  163.         this.aDot    = aDot;
  164.         this.e       = e;
  165.         this.eDot    = eDot;
  166.         this.i       = i;
  167.         this.iDot    = iDot;
  168.         this.pa      = pa;
  169.         this.paDot   = paDot;
  170.         this.raan    = raan;
  171.         this.raanDot = raanDot;

  172.         if (hasDerivatives()) {
  173.             final UnivariateDerivative1 eUD        = new UnivariateDerivative1(e, eDot);
  174.             final UnivariateDerivative1 anomalyUD  = new UnivariateDerivative1(anomaly,  anomalyDot);
  175.             final UnivariateDerivative1 vUD;
  176.             switch (type) {
  177.                 case MEAN :
  178.                     vUD = (a < 0) ?
  179.                           FieldKeplerianAnomalyUtility.hyperbolicMeanToTrue(eUD, anomalyUD) :
  180.                           FieldKeplerianAnomalyUtility.ellipticMeanToTrue(eUD, anomalyUD);
  181.                     break;
  182.                 case ECCENTRIC :
  183.                     vUD = (a < 0) ?
  184.                           FieldKeplerianAnomalyUtility.hyperbolicEccentricToTrue(eUD, anomalyUD) :
  185.                           FieldKeplerianAnomalyUtility.ellipticEccentricToTrue(eUD, anomalyUD);
  186.                     break;
  187.                 case TRUE :
  188.                     vUD = anomalyUD;
  189.                     break;
  190.                 default : // this should never happen
  191.                     throw new OrekitInternalError(null);
  192.             }
  193.             this.v    = vUD.getValue();
  194.             this.vDot = vUD.getDerivative(1);
  195.         } else {
  196.             switch (type) {
  197.                 case MEAN :
  198.                     this.v = (a < 0) ?
  199.                              KeplerianAnomalyUtility.hyperbolicMeanToTrue(e, anomaly) :
  200.                              KeplerianAnomalyUtility.ellipticMeanToTrue(e, anomaly);
  201.                     break;
  202.                 case ECCENTRIC :
  203.                     this.v = (a < 0) ?
  204.                              KeplerianAnomalyUtility.hyperbolicEccentricToTrue(e, anomaly) :
  205.                              KeplerianAnomalyUtility.ellipticEccentricToTrue(e, anomaly);
  206.                     break;
  207.                 case TRUE :
  208.                     this.v = anomaly;
  209.                     break;
  210.                 default : // this should never happen
  211.                     throw new OrekitInternalError(null);
  212.             }
  213.             this.vDot = Double.NaN;
  214.         }

  215.         // check true anomaly range
  216.         if (1 + e * FastMath.cos(v) <= 0) {
  217.             final double vMax = FastMath.acos(-1 / e);
  218.             throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_ANOMALY_OUT_OF_HYPERBOLIC_RANGE,
  219.                                                      v, e, -vMax, vMax);
  220.         }

  221.         this.partialPV = null;

  222.     }

  223.     /** Constructor from Cartesian parameters.
  224.      *
  225.      * <p> The acceleration provided in {@code pvCoordinates} is accessible using
  226.      * {@link #getPVCoordinates()} and {@link #getPVCoordinates(Frame)}. All other methods
  227.      * use {@code mu} and the position to compute the acceleration, including
  228.      * {@link #shiftedBy(double)} and {@link #getPVCoordinates(AbsoluteDate, Frame)}.
  229.      *
  230.      * @param pvCoordinates the PVCoordinates of the satellite
  231.      * @param frame the frame in which are defined the {@link PVCoordinates}
  232.      * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
  233.      * @param mu central attraction coefficient (m³/s²)
  234.      * @exception IllegalArgumentException if frame is not a {@link
  235.      * Frame#isPseudoInertial pseudo-inertial frame}
  236.      */
  237.     public KeplerianOrbit(final TimeStampedPVCoordinates pvCoordinates,
  238.                           final Frame frame, final double mu)
  239.         throws IllegalArgumentException {
  240.         this(pvCoordinates, frame, mu, hasNonKeplerianAcceleration(pvCoordinates, mu));
  241.     }

  242.     /** Constructor from Cartesian parameters.
  243.      *
  244.      * <p> The acceleration provided in {@code pvCoordinates} is accessible using
  245.      * {@link #getPVCoordinates()} and {@link #getPVCoordinates(Frame)}. All other methods
  246.      * use {@code mu} and the position to compute the acceleration, including
  247.      * {@link #shiftedBy(double)} and {@link #getPVCoordinates(AbsoluteDate, Frame)}.
  248.      *
  249.      * @param pvCoordinates the PVCoordinates of the satellite
  250.      * @param frame the frame in which are defined the {@link PVCoordinates}
  251.      * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
  252.      * @param mu central attraction coefficient (m³/s²)
  253.      * @param reliableAcceleration if true, the acceleration is considered to be reliable
  254.      * @exception IllegalArgumentException if frame is not a {@link
  255.      * Frame#isPseudoInertial pseudo-inertial frame}
  256.      */
  257.     private KeplerianOrbit(final TimeStampedPVCoordinates pvCoordinates,
  258.                            final Frame frame, final double mu,
  259.                            final boolean reliableAcceleration)
  260.         throws IllegalArgumentException {
  261.         super(pvCoordinates, frame, mu);

  262.         // compute inclination
  263.         final Vector3D momentum = pvCoordinates.getMomentum();
  264.         final double m2 = momentum.getNormSq();
  265.         i = Vector3D.angle(momentum, Vector3D.PLUS_K);

  266.         // compute right ascension of ascending node
  267.         raan = Vector3D.crossProduct(Vector3D.PLUS_K, momentum).getAlpha();

  268.         // preliminary computations for parameters depending on orbit shape (elliptic or hyperbolic)
  269.         final Vector3D pvP     = pvCoordinates.getPosition();
  270.         final Vector3D pvV     = pvCoordinates.getVelocity();
  271.         final Vector3D pvA     = pvCoordinates.getAcceleration();
  272.         final double   r2      = pvP.getNormSq();
  273.         final double   r       = FastMath.sqrt(r2);
  274.         final double   V2      = pvV.getNormSq();
  275.         final double   rV2OnMu = r * V2 / mu;

  276.         // compute semi-major axis (will be negative for hyperbolic orbits)
  277.         a = r / (2 - rV2OnMu);
  278.         final double muA = mu * a;

  279.         // compute true anomaly
  280.         if (isElliptical()) {
  281.             // elliptic or circular orbit
  282.             final double eSE = Vector3D.dotProduct(pvP, pvV) / FastMath.sqrt(muA);
  283.             final double eCE = rV2OnMu - 1;
  284.             e = FastMath.sqrt(eSE * eSE + eCE * eCE);
  285.             v = KeplerianAnomalyUtility.ellipticEccentricToTrue(e, FastMath.atan2(eSE, eCE));
  286.         } else {
  287.             // hyperbolic orbit
  288.             final double eSH = Vector3D.dotProduct(pvP, pvV) / FastMath.sqrt(-muA);
  289.             final double eCH = rV2OnMu - 1;
  290.             e = FastMath.sqrt(1 - m2 / muA);
  291.             v = KeplerianAnomalyUtility.hyperbolicEccentricToTrue(e, FastMath.log((eCH + eSH) / (eCH - eSH)) / 2);
  292.         }

  293.         // Checking eccentricity range
  294.         checkParameterRangeInclusive(ECCENTRICITY, e, 0.0, Double.POSITIVE_INFINITY);

  295.         // compute perigee argument
  296.         final Vector3D node = new Vector3D(raan, 0.0);
  297.         final double px = Vector3D.dotProduct(pvP, node);
  298.         final double py = Vector3D.dotProduct(pvP, Vector3D.crossProduct(momentum, node)) / FastMath.sqrt(m2);
  299.         pa = FastMath.atan2(py, px) - v;

  300.         partialPV = pvCoordinates;

  301.         if (reliableAcceleration) {
  302.             // we have a relevant acceleration, we can compute derivatives

  303.             final double[][] jacobian = new double[6][6];
  304.             getJacobianWrtCartesian(PositionAngleType.MEAN, jacobian);

  305.             final Vector3D keplerianAcceleration    = new Vector3D(-mu / (r * r2), pvP);
  306.             final Vector3D nonKeplerianAcceleration = pvA.subtract(keplerianAcceleration);
  307.             final double   aX                       = nonKeplerianAcceleration.getX();
  308.             final double   aY                       = nonKeplerianAcceleration.getY();
  309.             final double   aZ                       = nonKeplerianAcceleration.getZ();
  310.             aDot    = jacobian[0][3] * aX + jacobian[0][4] * aY + jacobian[0][5] * aZ;
  311.             eDot    = jacobian[1][3] * aX + jacobian[1][4] * aY + jacobian[1][5] * aZ;
  312.             iDot    = jacobian[2][3] * aX + jacobian[2][4] * aY + jacobian[2][5] * aZ;
  313.             paDot   = jacobian[3][3] * aX + jacobian[3][4] * aY + jacobian[3][5] * aZ;
  314.             raanDot = jacobian[4][3] * aX + jacobian[4][4] * aY + jacobian[4][5] * aZ;

  315.             // in order to compute true anomaly derivative, we must compute
  316.             // mean anomaly derivative including Keplerian motion and convert to true anomaly
  317.             final double MDot = getKeplerianMeanMotion() +
  318.                                 jacobian[5][3] * aX + jacobian[5][4] * aY + jacobian[5][5] * aZ;
  319.             final UnivariateDerivative1 eUD = new UnivariateDerivative1(e, eDot);
  320.             final UnivariateDerivative1 MUD = new UnivariateDerivative1(getMeanAnomaly(), MDot);
  321.             final UnivariateDerivative1 vUD = (a < 0) ?
  322.                                             FieldKeplerianAnomalyUtility.hyperbolicMeanToTrue(eUD, MUD) :
  323.                                             FieldKeplerianAnomalyUtility.ellipticMeanToTrue(eUD, MUD);
  324.             vDot = vUD.getDerivative(1);

  325.         } else {
  326.             // acceleration is either almost zero or NaN,
  327.             // we assume acceleration was not known
  328.             // we don't set up derivatives
  329.             aDot    = Double.NaN;
  330.             eDot    = Double.NaN;
  331.             iDot    = Double.NaN;
  332.             paDot   = Double.NaN;
  333.             raanDot = Double.NaN;
  334.             vDot    = Double.NaN;
  335.         }

  336.     }

  337.     /** Constructor from Cartesian parameters.
  338.      *
  339.      * <p> The acceleration provided in {@code pvCoordinates} is accessible using
  340.      * {@link #getPVCoordinates()} and {@link #getPVCoordinates(Frame)}. All other methods
  341.      * use {@code mu} and the position to compute the acceleration, including
  342.      * {@link #shiftedBy(double)} and {@link #getPVCoordinates(AbsoluteDate, Frame)}.
  343.      *
  344.      * @param pvCoordinates the PVCoordinates of the satellite
  345.      * @param frame the frame in which are defined the {@link PVCoordinates}
  346.      * (<em>must</em> be a {@link Frame#isPseudoInertial pseudo-inertial frame})
  347.      * @param date date of the orbital parameters
  348.      * @param mu central attraction coefficient (m³/s²)
  349.      * @exception IllegalArgumentException if frame is not a {@link
  350.      * Frame#isPseudoInertial pseudo-inertial frame}
  351.      */
  352.     public KeplerianOrbit(final PVCoordinates pvCoordinates,
  353.                           final Frame frame, final AbsoluteDate date, final double mu)
  354.         throws IllegalArgumentException {
  355.         this(new TimeStampedPVCoordinates(date, pvCoordinates), frame, mu);
  356.     }

  357.     /** Constructor from any kind of orbital parameters.
  358.      * @param op orbital parameters to copy
  359.      */
  360.     public KeplerianOrbit(final Orbit op) {
  361.         this(op.getPVCoordinates(), op.getFrame(), op.getMu(), op.hasDerivatives());
  362.     }

  363.     /** {@inheritDoc} */
  364.     public OrbitType getType() {
  365.         return OrbitType.KEPLERIAN;
  366.     }

  367.     /** {@inheritDoc} */
  368.     public double getA() {
  369.         return a;
  370.     }

  371.     /** {@inheritDoc} */
  372.     public double getADot() {
  373.         return aDot;
  374.     }

  375.     /** {@inheritDoc} */
  376.     public double getE() {
  377.         return e;
  378.     }

  379.     /** {@inheritDoc} */
  380.     public double getEDot() {
  381.         return eDot;
  382.     }

  383.     /** {@inheritDoc} */
  384.     public double getI() {
  385.         return i;
  386.     }

  387.     /** {@inheritDoc} */
  388.     public double getIDot() {
  389.         return iDot;
  390.     }

  391.     /** Get the perigee argument.
  392.      * @return perigee argument (rad)
  393.      */
  394.     public double getPerigeeArgument() {
  395.         return pa;
  396.     }

  397.     /** Get the perigee argument derivative.
  398.      * <p>
  399.      * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
  400.      * </p>
  401.      * @return perigee argument derivative (rad/s)
  402.      * @since 9.0
  403.      */
  404.     public double getPerigeeArgumentDot() {
  405.         return paDot;
  406.     }

  407.     /** Get the right ascension of the ascending node.
  408.      * @return right ascension of the ascending node (rad)
  409.      */
  410.     public double getRightAscensionOfAscendingNode() {
  411.         return raan;
  412.     }

  413.     /** Get the right ascension of the ascending node derivative.
  414.      * <p>
  415.      * If the orbit was created without derivatives, the value returned is {@link Double#NaN}.
  416.      * </p>
  417.      * @return right ascension of the ascending node derivative (rad/s)
  418.      * @since 9.0
  419.      */
  420.     public double getRightAscensionOfAscendingNodeDot() {
  421.         return raanDot;
  422.     }

  423.     /** Get the true anomaly.
  424.      * @return true anomaly (rad)
  425.      */
  426.     public double getTrueAnomaly() {
  427.         return v;
  428.     }

  429.     /** Get the true anomaly derivative.
  430.      * @return true anomaly derivative (rad/s)
  431.      */
  432.     public double getTrueAnomalyDot() {
  433.         return vDot;
  434.     }

  435.     /** Get the eccentric anomaly.
  436.      * @return eccentric anomaly (rad)
  437.      */
  438.     public double getEccentricAnomaly() {
  439.         return (a < 0) ?
  440.                KeplerianAnomalyUtility.hyperbolicTrueToEccentric(e, v) :
  441.                KeplerianAnomalyUtility.ellipticTrueToEccentric(e, v);
  442.     }

  443.     /** Get the eccentric anomaly derivative.
  444.      * @return eccentric anomaly derivative (rad/s)
  445.      * @since 9.0
  446.      */
  447.     public double getEccentricAnomalyDot() {
  448.         final UnivariateDerivative1 eUD = new UnivariateDerivative1(e, eDot);
  449.         final UnivariateDerivative1 vUD = new UnivariateDerivative1(v, vDot);
  450.         final UnivariateDerivative1 EUD = (a < 0) ?
  451.                                         FieldKeplerianAnomalyUtility.hyperbolicTrueToEccentric(eUD, vUD) :
  452.                                         FieldKeplerianAnomalyUtility.ellipticTrueToEccentric(eUD, vUD);
  453.         return EUD.getDerivative(1);
  454.     }

  455.     /** Get the mean anomaly.
  456.      * @return mean anomaly (rad)
  457.      */
  458.     public double getMeanAnomaly() {
  459.         return (a < 0) ?
  460.                KeplerianAnomalyUtility.hyperbolicTrueToMean(e, v) :
  461.                KeplerianAnomalyUtility.ellipticTrueToMean(e, v);
  462.     }

  463.     /** Get the mean anomaly derivative.
  464.      * @return mean anomaly derivative (rad/s)
  465.      * @since 9.0
  466.      */
  467.     public double getMeanAnomalyDot() {
  468.         final UnivariateDerivative1 eUD = new UnivariateDerivative1(e, eDot);
  469.         final UnivariateDerivative1 vUD = new UnivariateDerivative1(v, vDot);
  470.         final UnivariateDerivative1 MUD = (a < 0) ?
  471.                                         FieldKeplerianAnomalyUtility.hyperbolicTrueToMean(eUD, vUD) :
  472.                                         FieldKeplerianAnomalyUtility.ellipticTrueToMean(eUD, vUD);
  473.         return MUD.getDerivative(1);
  474.     }

  475.     /** Get the anomaly.
  476.      * @param type type of the angle
  477.      * @return anomaly (rad)
  478.      */
  479.     public double getAnomaly(final PositionAngleType type) {
  480.         return (type == PositionAngleType.MEAN) ? getMeanAnomaly() :
  481.                                               ((type == PositionAngleType.ECCENTRIC) ? getEccentricAnomaly() :
  482.                                                                                    getTrueAnomaly());
  483.     }

  484.     /** Get the anomaly derivative.
  485.      * @param type type of the angle
  486.      * @return anomaly derivative (rad/s)
  487.      * @since 9.0
  488.      */
  489.     public double getAnomalyDot(final PositionAngleType type) {
  490.         return (type == PositionAngleType.MEAN) ? getMeanAnomalyDot() :
  491.                                               ((type == PositionAngleType.ECCENTRIC) ? getEccentricAnomalyDot() :
  492.                                                                                    getTrueAnomalyDot());
  493.     }

  494.     /** {@inheritDoc} */
  495.     public double getEquinoctialEx() {
  496.         return e * FastMath.cos(pa + raan);
  497.     }

  498.     /** {@inheritDoc} */
  499.     public double getEquinoctialExDot() {
  500.         final double paPraan = pa + raan;
  501.         final SinCos sc      = FastMath.sinCos(paPraan);
  502.         return eDot * sc.cos() - e * sc.sin() * (paDot + raanDot);
  503.     }

  504.     /** {@inheritDoc} */
  505.     public double getEquinoctialEy() {
  506.         return e * FastMath.sin(pa + raan);
  507.     }

  508.     /** {@inheritDoc} */
  509.     public double getEquinoctialEyDot() {
  510.         final double paPraan = pa + raan;
  511.         final SinCos sc      = FastMath.sinCos(paPraan);
  512.         return eDot * sc.sin() + e * sc.cos() * (paDot + raanDot);
  513.     }

  514.     /** {@inheritDoc} */
  515.     public double getHx() {
  516.         // Check for equatorial retrograde orbit
  517.         if (FastMath.abs(i - FastMath.PI) < 1.0e-10) {
  518.             return Double.NaN;
  519.         }
  520.         return FastMath.cos(raan) * FastMath.tan(0.5 * i);
  521.     }

  522.     /** {@inheritDoc} */
  523.     public double getHxDot() {
  524.         // Check for equatorial retrograde orbit
  525.         if (FastMath.abs(i - FastMath.PI) < 1.0e-10) {
  526.             return Double.NaN;
  527.         }
  528.         final SinCos sc      = FastMath.sinCos(raan);
  529.         final double tan     = FastMath.tan(0.5 * i);
  530.         return 0.5 * (1 + tan * tan) * sc.cos() * iDot - tan * sc.sin() * raanDot;
  531.     }

  532.     /** {@inheritDoc} */
  533.     public double getHy() {
  534.         // Check for equatorial retrograde orbit
  535.         if (FastMath.abs(i - FastMath.PI) < 1.0e-10) {
  536.             return Double.NaN;
  537.         }
  538.         return  FastMath.sin(raan) * FastMath.tan(0.5 * i);
  539.     }

  540.     /** {@inheritDoc} */
  541.     public double getHyDot() {
  542.         // Check for equatorial retrograde orbit
  543.         if (FastMath.abs(i - FastMath.PI) < 1.0e-10) {
  544.             return Double.NaN;
  545.         }
  546.         final SinCos sc      = FastMath.sinCos(raan);
  547.         final double tan     = FastMath.tan(0.5 * i);
  548.         return 0.5 * (1 + tan * tan) * sc.sin() * iDot + tan * sc.cos() * raanDot;
  549.     }

  550.     /** {@inheritDoc} */
  551.     public double getLv() {
  552.         return pa + raan + v;
  553.     }

  554.     /** {@inheritDoc} */
  555.     public double getLvDot() {
  556.         return paDot + raanDot + vDot;
  557.     }

  558.     /** {@inheritDoc} */
  559.     public double getLE() {
  560.         return pa + raan + getEccentricAnomaly();
  561.     }

  562.     /** {@inheritDoc} */
  563.     public double getLEDot() {
  564.         return paDot + raanDot + getEccentricAnomalyDot();
  565.     }

  566.     /** {@inheritDoc} */
  567.     public double getLM() {
  568.         return pa + raan + getMeanAnomaly();
  569.     }

  570.     /** {@inheritDoc} */
  571.     public double getLMDot() {
  572.         return paDot + raanDot + getMeanAnomalyDot();
  573.     }

  574.     /** Compute reference axes.
  575.      * @return referecne axes
  576.      * @since 12.0
  577.      */
  578.     private Vector3D[] referenceAxes() {
  579.         // preliminary variables
  580.         final SinCos scRaan  = FastMath.sinCos(raan);
  581.         final SinCos scPa    = FastMath.sinCos(pa);
  582.         final SinCos scI     = FastMath.sinCos(i);
  583.         final double cosRaan = scRaan.cos();
  584.         final double sinRaan = scRaan.sin();
  585.         final double cosPa   = scPa.cos();
  586.         final double sinPa   = scPa.sin();
  587.         final double cosI    = scI.cos();
  588.         final double sinI    = scI.sin();

  589.         final double crcp    = cosRaan * cosPa;
  590.         final double crsp    = cosRaan * sinPa;
  591.         final double srcp    = sinRaan * cosPa;
  592.         final double srsp    = sinRaan * sinPa;

  593.         // reference axes defining the orbital plane
  594.         return new Vector3D[] {
  595.             new Vector3D( crcp - cosI * srsp,  srcp + cosI * crsp, sinI * sinPa),
  596.             new Vector3D(-crsp - cosI * srcp, -srsp + cosI * crcp, sinI * cosPa)
  597.         };

  598.     }

  599.     /** Compute position and velocity but not acceleration.
  600.      */
  601.     private void computePVWithoutA() {

  602.         if (partialPV != null) {
  603.             // already computed
  604.             return;
  605.         }

  606.         final Vector3D[] axes = referenceAxes();

  607.         if (isElliptical()) {

  608.             // elliptical case

  609.             // elliptic eccentric anomaly
  610.             final double uME2   = (1 - e) * (1 + e);
  611.             final double s1Me2  = FastMath.sqrt(uME2);
  612.             final SinCos scE    = FastMath.sinCos(getEccentricAnomaly());
  613.             final double cosE   = scE.cos();
  614.             final double sinE   = scE.sin();

  615.             // coordinates of position and velocity in the orbital plane
  616.             final double x      = a * (cosE - e);
  617.             final double y      = a * sinE * s1Me2;
  618.             final double factor = FastMath.sqrt(getMu() / a) / (1 - e * cosE);
  619.             final double xDot   = -sinE * factor;
  620.             final double yDot   =  cosE * s1Me2 * factor;

  621.             final Vector3D position = new Vector3D(x, axes[0], y, axes[1]);
  622.             final Vector3D velocity = new Vector3D(xDot, axes[0], yDot, axes[1]);
  623.             partialPV = new PVCoordinates(position, velocity);

  624.         } else {

  625.             // hyperbolic case

  626.             // compute position and velocity factors
  627.             final SinCos scV       = FastMath.sinCos(v);
  628.             final double sinV      = scV.sin();
  629.             final double cosV      = scV.cos();
  630.             final double f         = a * (1 - e * e);
  631.             final double posFactor = f / (1 + e * cosV);
  632.             final double velFactor = FastMath.sqrt(getMu() / f);

  633.             final double   x            =  posFactor * cosV;
  634.             final double   y            =  posFactor * sinV;
  635.             final double   xDot         = -velFactor * sinV;
  636.             final double   yDot         =  velFactor * (e + cosV);

  637.             final Vector3D position = new Vector3D(x, axes[0], y, axes[1]);
  638.             final Vector3D velocity = new Vector3D(xDot, axes[0], yDot, axes[1]);
  639.             partialPV = new PVCoordinates(position, velocity);

  640.         }

  641.     }

  642.     /** Compute non-Keplerian part of the acceleration from first time derivatives.
  643.      * <p>
  644.      * This method should be called only when {@link #hasDerivatives()} returns true.
  645.      * </p>
  646.      * @return non-Keplerian part of the acceleration
  647.      */
  648.     private Vector3D nonKeplerianAcceleration() {

  649.         final double[][] dCdP = new double[6][6];
  650.         getJacobianWrtParameters(PositionAngleType.MEAN, dCdP);

  651.         final double nonKeplerianMeanMotion = getMeanAnomalyDot() - getKeplerianMeanMotion();
  652.         final double nonKeplerianAx = dCdP[3][0] * aDot    + dCdP[3][1] * eDot    + dCdP[3][2] * iDot    +
  653.                                       dCdP[3][3] * paDot   + dCdP[3][4] * raanDot + dCdP[3][5] * nonKeplerianMeanMotion;
  654.         final double nonKeplerianAy = dCdP[4][0] * aDot    + dCdP[4][1] * eDot    + dCdP[4][2] * iDot    +
  655.                                       dCdP[4][3] * paDot   + dCdP[4][4] * raanDot + dCdP[4][5] * nonKeplerianMeanMotion;
  656.         final double nonKeplerianAz = dCdP[5][0] * aDot    + dCdP[5][1] * eDot    + dCdP[5][2] * iDot    +
  657.                                       dCdP[5][3] * paDot   + dCdP[5][4] * raanDot + dCdP[5][5] * nonKeplerianMeanMotion;

  658.         return new Vector3D(nonKeplerianAx, nonKeplerianAy, nonKeplerianAz);

  659.     }

  660.     /** {@inheritDoc} */
  661.     protected Vector3D initPosition() {

  662.         final Vector3D[] axes = referenceAxes();

  663.         if (isElliptical()) {

  664.             // elliptical case

  665.             // elliptic eccentric anomaly
  666.             final double uME2   = (1 - e) * (1 + e);
  667.             final double s1Me2  = FastMath.sqrt(uME2);
  668.             final SinCos scE    = FastMath.sinCos(getEccentricAnomaly());
  669.             final double cosE   = scE.cos();
  670.             final double sinE   = scE.sin();

  671.             return new Vector3D(a * (cosE - e), axes[0], a * sinE * s1Me2, axes[1]);

  672.         } else {

  673.             // hyperbolic case

  674.             // compute position and velocity factors
  675.             final SinCos scV       = FastMath.sinCos(v);
  676.             final double sinV      = scV.sin();
  677.             final double cosV      = scV.cos();
  678.             final double f         = a * (1 - e * e);
  679.             final double posFactor = f / (1 + e * cosV);

  680.             return new Vector3D(posFactor * cosV, axes[0], posFactor * sinV, axes[1]);

  681.         }

  682.     }

  683.     /** {@inheritDoc} */
  684.     protected TimeStampedPVCoordinates initPVCoordinates() {

  685.         // position and velocity
  686.         computePVWithoutA();

  687.         // acceleration
  688.         final double r2 = partialPV.getPosition().getNormSq();
  689.         final Vector3D keplerianAcceleration = new Vector3D(-getMu() / (r2 * FastMath.sqrt(r2)), partialPV.getPosition());
  690.         final Vector3D acceleration = hasDerivatives() ?
  691.                                       keplerianAcceleration.add(nonKeplerianAcceleration()) :
  692.                                       keplerianAcceleration;

  693.         return new TimeStampedPVCoordinates(getDate(), partialPV.getPosition(), partialPV.getVelocity(), acceleration);

  694.     }

  695.     /** {@inheritDoc} */
  696.     public KeplerianOrbit shiftedBy(final double dt) {

  697.         // use Keplerian-only motion
  698.         final KeplerianOrbit keplerianShifted = new KeplerianOrbit(a, e, i, pa, raan,
  699.                                                                    getMeanAnomaly() + getKeplerianMeanMotion() * dt,
  700.                                                                    PositionAngleType.MEAN, getFrame(),
  701.                                                                    getDate().shiftedBy(dt), getMu());

  702.         if (hasDerivatives()) {

  703.             // extract non-Keplerian acceleration from first time derivatives
  704.             final Vector3D nonKeplerianAcceleration = nonKeplerianAcceleration();

  705.             // add quadratic effect of non-Keplerian acceleration to Keplerian-only shift
  706.             keplerianShifted.computePVWithoutA();
  707.             final Vector3D fixedP   = new Vector3D(1, keplerianShifted.partialPV.getPosition(),
  708.                                                    0.5 * dt * dt, nonKeplerianAcceleration);
  709.             final double   fixedR2 = fixedP.getNormSq();
  710.             final double   fixedR  = FastMath.sqrt(fixedR2);
  711.             final Vector3D fixedV  = new Vector3D(1, keplerianShifted.partialPV.getVelocity(),
  712.                                                   dt, nonKeplerianAcceleration);
  713.             final Vector3D fixedA  = new Vector3D(-getMu() / (fixedR2 * fixedR), keplerianShifted.partialPV.getPosition(),
  714.                                                   1, nonKeplerianAcceleration);

  715.             // build a new orbit, taking non-Keplerian acceleration into account
  716.             return new KeplerianOrbit(new TimeStampedPVCoordinates(keplerianShifted.getDate(),
  717.                                                                    fixedP, fixedV, fixedA),
  718.                                       keplerianShifted.getFrame(), keplerianShifted.getMu());

  719.         } else {
  720.             // Keplerian-only motion is all we can do
  721.             return keplerianShifted;
  722.         }

  723.     }

  724.     /** {@inheritDoc} */
  725.     protected double[][] computeJacobianMeanWrtCartesian() {
  726.         if (isElliptical()) {
  727.             return computeJacobianMeanWrtCartesianElliptical();
  728.         } else {
  729.             return computeJacobianMeanWrtCartesianHyperbolic();
  730.         }
  731.     }

  732.     /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
  733.      * <p>
  734.      * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
  735.      * respect to Cartesian coordinate j (x for j=0, y for j=1, z for j=2, xDot for j=3,
  736.      * yDot for j=4, zDot for j=5).
  737.      * </p>
  738.      * @return 6x6 Jacobian matrix
  739.      */
  740.     private double[][] computeJacobianMeanWrtCartesianElliptical() {

  741.         final double[][] jacobian = new double[6][6];

  742.         // compute various intermediate parameters
  743.         computePVWithoutA();
  744.         final Vector3D position = partialPV.getPosition();
  745.         final Vector3D velocity = partialPV.getVelocity();
  746.         final Vector3D momentum = partialPV.getMomentum();
  747.         final double v2         = velocity.getNormSq();
  748.         final double r2         = position.getNormSq();
  749.         final double r          = FastMath.sqrt(r2);
  750.         final double r3         = r * r2;

  751.         final double px         = position.getX();
  752.         final double py         = position.getY();
  753.         final double pz         = position.getZ();
  754.         final double vx         = velocity.getX();
  755.         final double vy         = velocity.getY();
  756.         final double vz         = velocity.getZ();
  757.         final double mx         = momentum.getX();
  758.         final double my         = momentum.getY();
  759.         final double mz         = momentum.getZ();

  760.         final double mu         = getMu();
  761.         final double sqrtMuA    = FastMath.sqrt(a * mu);
  762.         final double sqrtAoMu   = FastMath.sqrt(a / mu);
  763.         final double a2         = a * a;
  764.         final double twoA       = 2 * a;
  765.         final double rOnA       = r / a;

  766.         final double oMe2       = 1 - e * e;
  767.         final double epsilon    = FastMath.sqrt(oMe2);
  768.         final double sqrtRec    = 1 / epsilon;

  769.         final SinCos scI        = FastMath.sinCos(i);
  770.         final SinCos scPA       = FastMath.sinCos(pa);
  771.         final double cosI       = scI.cos();
  772.         final double sinI       = scI.sin();
  773.         final double cosPA      = scPA.cos();
  774.         final double sinPA      = scPA.sin();

  775.         final double pv         = Vector3D.dotProduct(position, velocity);
  776.         final double cosE       = (a - r) / (a * e);
  777.         final double sinE       = pv / (e * sqrtMuA);

  778.         // da
  779.         final Vector3D vectorAR = new Vector3D(2 * a2 / r3, position);
  780.         final Vector3D vectorARDot = velocity.scalarMultiply(2 * a2 / mu);
  781.         fillHalfRow(1, vectorAR,    jacobian[0], 0);
  782.         fillHalfRow(1, vectorARDot, jacobian[0], 3);

  783.         // de
  784.         final double factorER3 = pv / twoA;
  785.         final Vector3D vectorER   = new Vector3D(cosE * v2 / (r * mu), position,
  786.                                                  sinE / sqrtMuA, velocity,
  787.                                                  -factorER3 * sinE / sqrtMuA, vectorAR);
  788.         final Vector3D vectorERDot = new Vector3D(sinE / sqrtMuA, position,
  789.                                                   cosE * 2 * r / mu, velocity,
  790.                                                   -factorER3 * sinE / sqrtMuA, vectorARDot);
  791.         fillHalfRow(1, vectorER,    jacobian[1], 0);
  792.         fillHalfRow(1, vectorERDot, jacobian[1], 3);

  793.         // dE / dr (Eccentric anomaly)
  794.         final double coefE = cosE / (e * sqrtMuA);
  795.         final Vector3D  vectorEAnR =
  796.             new Vector3D(-sinE * v2 / (e * r * mu), position, coefE, velocity,
  797.                          -factorER3 * coefE, vectorAR);

  798.         // dE / drDot
  799.         final Vector3D  vectorEAnRDot =
  800.             new Vector3D(-sinE * 2 * r / (e * mu), velocity, coefE, position,
  801.                          -factorER3 * coefE, vectorARDot);

  802.         // precomputing some more factors
  803.         final double s1 = -sinE * pz / r - cosE * vz * sqrtAoMu;
  804.         final double s2 = -cosE * pz / r3;
  805.         final double s3 = -sinE * vz / (2 * sqrtMuA);
  806.         final double t1 = sqrtRec * (cosE * pz / r - sinE * vz * sqrtAoMu);
  807.         final double t2 = sqrtRec * (-sinE * pz / r3);
  808.         final double t3 = sqrtRec * (cosE - e) * vz / (2 * sqrtMuA);
  809.         final double t4 = sqrtRec * (e * sinI * cosPA * sqrtRec - vz * sqrtAoMu);
  810.         final Vector3D s = new Vector3D(cosE / r, Vector3D.PLUS_K,
  811.                                         s1,       vectorEAnR,
  812.                                         s2,       position,
  813.                                         s3,       vectorAR);
  814.         final Vector3D sDot = new Vector3D(-sinE * sqrtAoMu, Vector3D.PLUS_K,
  815.                                            s1,               vectorEAnRDot,
  816.                                            s3,               vectorARDot);
  817.         final Vector3D t =
  818.             new Vector3D(sqrtRec * sinE / r, Vector3D.PLUS_K).add(new Vector3D(t1, vectorEAnR,
  819.                                                                                t2, position,
  820.                                                                                t3, vectorAR,
  821.                                                                                t4, vectorER));
  822.         final Vector3D tDot = new Vector3D(sqrtRec * (cosE - e) * sqrtAoMu, Vector3D.PLUS_K,
  823.                                            t1,                              vectorEAnRDot,
  824.                                            t3,                              vectorARDot,
  825.                                            t4,                              vectorERDot);

  826.         // di
  827.         final double factorI1 = -sinI * sqrtRec / sqrtMuA;
  828.         final double i1 =  factorI1;
  829.         final double i2 = -factorI1 * mz / twoA;
  830.         final double i3 =  factorI1 * mz * e / oMe2;
  831.         final double i4 = cosI * sinPA;
  832.         final double i5 = cosI * cosPA;
  833.         fillHalfRow(i1, new Vector3D(vy, -vx, 0), i2, vectorAR, i3, vectorER, i4, s, i5, t,
  834.                     jacobian[2], 0);
  835.         fillHalfRow(i1, new Vector3D(-py, px, 0), i2, vectorARDot, i3, vectorERDot, i4, sDot, i5, tDot,
  836.                     jacobian[2], 3);

  837.         // dpa
  838.         fillHalfRow(cosPA / sinI, s,    -sinPA / sinI, t,    jacobian[3], 0);
  839.         fillHalfRow(cosPA / sinI, sDot, -sinPA / sinI, tDot, jacobian[3], 3);

  840.         // dRaan
  841.         final double factorRaanR = 1 / (mu * a * oMe2 * sinI * sinI);
  842.         fillHalfRow(-factorRaanR * my, new Vector3D(  0, vz, -vy),
  843.                      factorRaanR * mx, new Vector3D(-vz,  0,  vx),
  844.                      jacobian[4], 0);
  845.         fillHalfRow(-factorRaanR * my, new Vector3D( 0, -pz,  py),
  846.                      factorRaanR * mx, new Vector3D(pz,   0, -px),
  847.                      jacobian[4], 3);

  848.         // dM
  849.         fillHalfRow(rOnA, vectorEAnR,    -sinE, vectorER,    jacobian[5], 0);
  850.         fillHalfRow(rOnA, vectorEAnRDot, -sinE, vectorERDot, jacobian[5], 3);

  851.         return jacobian;

  852.     }

  853.     /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
  854.      * <p>
  855.      * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
  856.      * respect to Cartesian coordinate j (x for j=0, y for j=1, z for j=2, xDot for j=3,
  857.      * yDot for j=4, zDot for j=5).
  858.      * </p>
  859.      * @return 6x6 Jacobian matrix
  860.      */
  861.     private double[][] computeJacobianMeanWrtCartesianHyperbolic() {

  862.         final double[][] jacobian = new double[6][6];

  863.         // compute various intermediate parameters
  864.         computePVWithoutA();
  865.         final Vector3D position = partialPV.getPosition();
  866.         final Vector3D velocity = partialPV.getVelocity();
  867.         final Vector3D momentum = partialPV.getMomentum();
  868.         final double r2         = position.getNormSq();
  869.         final double r          = FastMath.sqrt(r2);
  870.         final double r3         = r * r2;

  871.         final double x          = position.getX();
  872.         final double y          = position.getY();
  873.         final double z          = position.getZ();
  874.         final double vx         = velocity.getX();
  875.         final double vy         = velocity.getY();
  876.         final double vz         = velocity.getZ();
  877.         final double mx         = momentum.getX();
  878.         final double my         = momentum.getY();
  879.         final double mz         = momentum.getZ();

  880.         final double mu         = getMu();
  881.         final double absA       = -a;
  882.         final double sqrtMuA    = FastMath.sqrt(absA * mu);
  883.         final double a2         = a * a;
  884.         final double rOa        = r / absA;

  885.         final SinCos scI        = FastMath.sinCos(i);
  886.         final double cosI       = scI.cos();
  887.         final double sinI       = scI.sin();

  888.         final double pv         = Vector3D.dotProduct(position, velocity);

  889.         // da
  890.         final Vector3D vectorAR = new Vector3D(-2 * a2 / r3, position);
  891.         final Vector3D vectorARDot = velocity.scalarMultiply(-2 * a2 / mu);
  892.         fillHalfRow(-1, vectorAR,    jacobian[0], 0);
  893.         fillHalfRow(-1, vectorARDot, jacobian[0], 3);

  894.         // differentials of the momentum
  895.         final double m      = momentum.getNorm();
  896.         final double oOm    = 1 / m;
  897.         final Vector3D dcXP = new Vector3D(  0,  vz, -vy);
  898.         final Vector3D dcYP = new Vector3D(-vz,   0,  vx);
  899.         final Vector3D dcZP = new Vector3D( vy, -vx,   0);
  900.         final Vector3D dcXV = new Vector3D(  0,  -z,   y);
  901.         final Vector3D dcYV = new Vector3D(  z,   0,  -x);
  902.         final Vector3D dcZV = new Vector3D( -y,   x,   0);
  903.         final Vector3D dCP  = new Vector3D(mx * oOm, dcXP, my * oOm, dcYP, mz * oOm, dcZP);
  904.         final Vector3D dCV  = new Vector3D(mx * oOm, dcXV, my * oOm, dcYV, mz * oOm, dcZV);

  905.         // dp
  906.         final double mOMu   = m / mu;
  907.         final Vector3D dpP  = new Vector3D(2 * mOMu, dCP);
  908.         final Vector3D dpV  = new Vector3D(2 * mOMu, dCV);

  909.         // de
  910.         final double p      = m * mOMu;
  911.         final double moO2ae = 1 / (2 * absA * e);
  912.         final double m2OaMu = -p / absA;
  913.         fillHalfRow(moO2ae, dpP, m2OaMu * moO2ae, vectorAR,    jacobian[1], 0);
  914.         fillHalfRow(moO2ae, dpV, m2OaMu * moO2ae, vectorARDot, jacobian[1], 3);

  915.         // di
  916.         final double cI1 = 1 / (m * sinI);
  917.         final double cI2 = cosI * cI1;
  918.         fillHalfRow(cI2, dCP, -cI1, dcZP, jacobian[2], 0);
  919.         fillHalfRow(cI2, dCV, -cI1, dcZV, jacobian[2], 3);

  920.         // dPA
  921.         final double cP1     =  y * oOm;
  922.         final double cP2     = -x * oOm;
  923.         final double cP3     = -(mx * cP1 + my * cP2);
  924.         final double cP4     = cP3 * oOm;
  925.         final double cP5     = -1 / (r2 * sinI * sinI);
  926.         final double cP6     = z  * cP5;
  927.         final double cP7     = cP3 * cP5;
  928.         final Vector3D dacP  = new Vector3D(cP1, dcXP, cP2, dcYP, cP4, dCP, oOm, new Vector3D(-my, mx, 0));
  929.         final Vector3D dacV  = new Vector3D(cP1, dcXV, cP2, dcYV, cP4, dCV);
  930.         final Vector3D dpoP  = new Vector3D(cP6, dacP, cP7, Vector3D.PLUS_K);
  931.         final Vector3D dpoV  = new Vector3D(cP6, dacV);

  932.         final double re2     = r2 * e * e;
  933.         final double recOre2 = (p - r) / re2;
  934.         final double resOre2 = (pv * mOMu) / re2;
  935.         final Vector3D dreP  = new Vector3D(mOMu, velocity, pv / mu, dCP);
  936.         final Vector3D dreV  = new Vector3D(mOMu, position, pv / mu, dCV);
  937.         final Vector3D davP  = new Vector3D(-resOre2, dpP, recOre2, dreP, resOre2 / r, position);
  938.         final Vector3D davV  = new Vector3D(-resOre2, dpV, recOre2, dreV);
  939.         fillHalfRow(1, dpoP, -1, davP, jacobian[3], 0);
  940.         fillHalfRow(1, dpoV, -1, davV, jacobian[3], 3);

  941.         // dRAAN
  942.         final double cO0 = cI1 * cI1;
  943.         final double cO1 =  mx * cO0;
  944.         final double cO2 = -my * cO0;
  945.         fillHalfRow(cO1, dcYP, cO2, dcXP, jacobian[4], 0);
  946.         fillHalfRow(cO1, dcYV, cO2, dcXV, jacobian[4], 3);

  947.         // dM
  948.         final double s2a    = pv / (2 * absA);
  949.         final double oObux  = 1 / FastMath.sqrt(m * m + mu * absA);
  950.         final double scasbu = pv * oObux;
  951.         final Vector3D dauP = new Vector3D(1 / sqrtMuA, velocity, -s2a / sqrtMuA, vectorAR);
  952.         final Vector3D dauV = new Vector3D(1 / sqrtMuA, position, -s2a / sqrtMuA, vectorARDot);
  953.         final Vector3D dbuP = new Vector3D(oObux * mu / 2, vectorAR,    m * oObux, dCP);
  954.         final Vector3D dbuV = new Vector3D(oObux * mu / 2, vectorARDot, m * oObux, dCV);
  955.         final Vector3D dcuP = new Vector3D(oObux, velocity, -scasbu * oObux, dbuP);
  956.         final Vector3D dcuV = new Vector3D(oObux, position, -scasbu * oObux, dbuV);
  957.         fillHalfRow(1, dauP, -e / (1 + rOa), dcuP, jacobian[5], 0);
  958.         fillHalfRow(1, dauV, -e / (1 + rOa), dcuV, jacobian[5], 3);

  959.         return jacobian;

  960.     }

  961.     /** {@inheritDoc} */
  962.     protected double[][] computeJacobianEccentricWrtCartesian() {
  963.         if (isElliptical()) {
  964.             return computeJacobianEccentricWrtCartesianElliptical();
  965.         } else {
  966.             return computeJacobianEccentricWrtCartesianHyperbolic();
  967.         }
  968.     }

  969.     /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
  970.      * <p>
  971.      * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
  972.      * respect to Cartesian coordinate j (x for j=0, y for j=1, z for j=2, xDot for j=3,
  973.      * yDot for j=4, zDot for j=5).
  974.      * </p>
  975.      * @return 6x6 Jacobian matrix
  976.      */
  977.     private double[][] computeJacobianEccentricWrtCartesianElliptical() {

  978.         // start by computing the Jacobian with mean angle
  979.         final double[][] jacobian = computeJacobianMeanWrtCartesianElliptical();

  980.         // Differentiating the Kepler equation M = E - e sin E leads to:
  981.         // dM = (1 - e cos E) dE - sin E de
  982.         // which is inverted and rewritten as:
  983.         // dE = a/r dM + sin E a/r de
  984.         final SinCos scE              = FastMath.sinCos(getEccentricAnomaly());
  985.         final double aOr              = 1 / (1 - e * scE.cos());

  986.         // update anomaly row
  987.         final double[] eRow           = jacobian[1];
  988.         final double[] anomalyRow     = jacobian[5];
  989.         for (int j = 0; j < anomalyRow.length; ++j) {
  990.             anomalyRow[j] = aOr * (anomalyRow[j] + scE.sin() * eRow[j]);
  991.         }

  992.         return jacobian;

  993.     }

  994.     /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
  995.      * <p>
  996.      * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
  997.      * respect to Cartesian coordinate j (x for j=0, y for j=1, z for j=2, xDot for j=3,
  998.      * yDot for j=4, zDot for j=5).
  999.      * </p>
  1000.      * @return 6x6 Jacobian matrix
  1001.      */
  1002.     private double[][] computeJacobianEccentricWrtCartesianHyperbolic() {

  1003.         // start by computing the Jacobian with mean angle
  1004.         final double[][] jacobian = computeJacobianMeanWrtCartesianHyperbolic();

  1005.         // Differentiating the Kepler equation M = e sinh H - H leads to:
  1006.         // dM = (e cosh H - 1) dH + sinh H de
  1007.         // which is inverted and rewritten as:
  1008.         // dH = 1 / (e cosh H - 1) dM - sinh H / (e cosh H - 1) de
  1009.         final double H      = getEccentricAnomaly();
  1010.         final double coshH  = FastMath.cosh(H);
  1011.         final double sinhH  = FastMath.sinh(H);
  1012.         final double absaOr = 1 / (e * coshH - 1);

  1013.         // update anomaly row
  1014.         final double[] eRow       = jacobian[1];
  1015.         final double[] anomalyRow = jacobian[5];
  1016.         for (int j = 0; j < anomalyRow.length; ++j) {
  1017.             anomalyRow[j] = absaOr * (anomalyRow[j] - sinhH * eRow[j]);
  1018.         }

  1019.         return jacobian;

  1020.     }

  1021.     /** {@inheritDoc} */
  1022.     protected double[][] computeJacobianTrueWrtCartesian() {
  1023.         if (isElliptical()) {
  1024.             return computeJacobianTrueWrtCartesianElliptical();
  1025.         } else {
  1026.             return computeJacobianTrueWrtCartesianHyperbolic();
  1027.         }
  1028.     }

  1029.     /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
  1030.      * <p>
  1031.      * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
  1032.      * respect to Cartesian coordinate j (x for j=0, y for j=1, z for j=2, xDot for j=3,
  1033.      * yDot for j=4, zDot for j=5).
  1034.      * </p>
  1035.      * @return 6x6 Jacobian matrix
  1036.      */
  1037.     private double[][] computeJacobianTrueWrtCartesianElliptical() {

  1038.         // start by computing the Jacobian with eccentric angle
  1039.         final double[][] jacobian = computeJacobianEccentricWrtCartesianElliptical();

  1040.         // Differentiating the eccentric anomaly equation sin E = sqrt(1-e^2) sin v / (1 + e cos v)
  1041.         // and using cos E = (e + cos v) / (1 + e cos v) to get rid of cos E leads to:
  1042.         // dE = [sqrt (1 - e^2) / (1 + e cos v)] dv - [sin E / (1 - e^2)] de
  1043.         // which is inverted and rewritten as:
  1044.         // dv = sqrt (1 - e^2) a/r dE + [sin E / sqrt (1 - e^2)] a/r de
  1045.         final double e2           = e * e;
  1046.         final double oMe2         = 1 - e2;
  1047.         final double epsilon      = FastMath.sqrt(oMe2);
  1048.         final SinCos scE          = FastMath.sinCos(getEccentricAnomaly());
  1049.         final double aOr          = 1 / (1 - e * scE.cos());
  1050.         final double aFactor      = epsilon * aOr;
  1051.         final double eFactor      = scE.sin() * aOr / epsilon;

  1052.         // update anomaly row
  1053.         final double[] eRow       = jacobian[1];
  1054.         final double[] anomalyRow = jacobian[5];
  1055.         for (int j = 0; j < anomalyRow.length; ++j) {
  1056.             anomalyRow[j] = aFactor * anomalyRow[j] + eFactor * eRow[j];
  1057.         }

  1058.         return jacobian;

  1059.     }

  1060.     /** Compute the Jacobian of the orbital parameters with respect to the Cartesian parameters.
  1061.      * <p>
  1062.      * Element {@code jacobian[i][j]} is the derivative of parameter i of the orbit with
  1063.      * respect to Cartesian coordinate j (x for j=0, y for j=1, z for j=2, xDot for j=3,
  1064.      * yDot for j=4, zDot for j=5).
  1065.      * </p>
  1066.      * @return 6x6 Jacobian matrix
  1067.      */
  1068.     private double[][] computeJacobianTrueWrtCartesianHyperbolic() {

  1069.         // start by computing the Jacobian with eccentric angle
  1070.         final double[][] jacobian = computeJacobianEccentricWrtCartesianHyperbolic();

  1071.         // Differentiating the eccentric anomaly equation sinh H = sqrt(e^2-1) sin v / (1 + e cos v)
  1072.         // and using cosh H = (e + cos v) / (1 + e cos v) to get rid of cosh H leads to:
  1073.         // dH = [sqrt (e^2 - 1) / (1 + e cos v)] dv + [sinh H / (e^2 - 1)] de
  1074.         // which is inverted and rewritten as:
  1075.         // dv = sqrt (1 - e^2) a/r dH - [sinh H / sqrt (e^2 - 1)] a/r de
  1076.         final double e2       = e * e;
  1077.         final double e2Mo     = e2 - 1;
  1078.         final double epsilon  = FastMath.sqrt(e2Mo);
  1079.         final double H        = getEccentricAnomaly();
  1080.         final double coshH    = FastMath.cosh(H);
  1081.         final double sinhH    = FastMath.sinh(H);
  1082.         final double aOr      = 1 / (e * coshH - 1);
  1083.         final double aFactor  = epsilon * aOr;
  1084.         final double eFactor  = sinhH * aOr / epsilon;

  1085.         // update anomaly row
  1086.         final double[] eRow           = jacobian[1];
  1087.         final double[] anomalyRow     = jacobian[5];
  1088.         for (int j = 0; j < anomalyRow.length; ++j) {
  1089.             anomalyRow[j] = aFactor * anomalyRow[j] - eFactor * eRow[j];
  1090.         }

  1091.         return jacobian;

  1092.     }

  1093.     /** {@inheritDoc} */
  1094.     public void addKeplerContribution(final PositionAngleType type, final double gm,
  1095.                                       final double[] pDot) {
  1096.         final double oMe2;
  1097.         final double ksi;
  1098.         final double absA = FastMath.abs(a);
  1099.         final double n    = FastMath.sqrt(gm / absA) / absA;
  1100.         switch (type) {
  1101.             case MEAN :
  1102.                 pDot[5] += n;
  1103.                 break;
  1104.             case ECCENTRIC :
  1105.                 oMe2 = FastMath.abs(1 - e * e);
  1106.                 ksi  = 1 + e * FastMath.cos(v);
  1107.                 pDot[5] += n * ksi / oMe2;
  1108.                 break;
  1109.             case TRUE :
  1110.                 oMe2 = FastMath.abs(1 - e * e);
  1111.                 ksi  = 1 + e * FastMath.cos(v);
  1112.                 pDot[5] += n * ksi * ksi / (oMe2 * FastMath.sqrt(oMe2));
  1113.                 break;
  1114.             default :
  1115.                 throw new OrekitInternalError(null);
  1116.         }
  1117.     }

  1118.     /**  Returns a string representation of this Keplerian parameters object.
  1119.      * @return a string representation of this object
  1120.      */
  1121.     public String toString() {
  1122.         return new StringBuilder().append("Keplerian parameters: ").append('{').
  1123.                                   append("a: ").append(a).
  1124.                                   append("; e: ").append(e).
  1125.                                   append("; i: ").append(FastMath.toDegrees(i)).
  1126.                                   append("; pa: ").append(FastMath.toDegrees(pa)).
  1127.                                   append("; raan: ").append(FastMath.toDegrees(raan)).
  1128.                                   append("; v: ").append(FastMath.toDegrees(v)).
  1129.                                   append(";}").toString();
  1130.     }

  1131.     /** {@inheritDoc} */
  1132.     @Override
  1133.     public PositionAngleType getCachedPositionAngleType() {
  1134.         return PositionAngleType.TRUE;
  1135.     }

  1136.     /** {@inheritDoc} */
  1137.     @Override
  1138.     public boolean hasRates() {
  1139.         return hasDerivatives();
  1140.     }

  1141.     /** {@inheritDoc} */
  1142.     @Override
  1143.     public KeplerianOrbit removeRates() {
  1144.         final PositionAngleType positionAngleType = getCachedPositionAngleType();
  1145.         return new KeplerianOrbit(getA(), getE(), getI(), getPerigeeArgument(), getRightAscensionOfAscendingNode(),
  1146.                 getAnomaly(positionAngleType), positionAngleType, getFrame(), getDate(), getMu());
  1147.     }

  1148.     /** Check if the given parameter is within an acceptable range.
  1149.      * The bounds are inclusive: an exception is raised when either of those conditions are met:
  1150.      * <ul>
  1151.      *     <li>The parameter is strictly greater than upperBound</li>
  1152.      *     <li>The parameter is strictly lower than lowerBound</li>
  1153.      * </ul>
  1154.      * <p>
  1155.      * In either of these cases, an OrekitException is raised.
  1156.      * </p>
  1157.      * @param parameterName name of the parameter
  1158.      * @param parameter value of the parameter
  1159.      * @param lowerBound lower bound of the acceptable range (inclusive)
  1160.      * @param upperBound upper bound of the acceptable range (inclusive)
  1161.      */
  1162.     private void checkParameterRangeInclusive(final String parameterName, final double parameter,
  1163.                                               final double lowerBound, final double upperBound) {
  1164.         if (parameter < lowerBound || parameter > upperBound) {
  1165.             throw new OrekitException(OrekitMessages.INVALID_PARAMETER_RANGE, parameterName,
  1166.                                       parameter, lowerBound, upperBound);
  1167.         }
  1168.     }

  1169.     /** Replace the instance with a data transfer object for serialization.
  1170.      * @return data transfer object that will be serialized
  1171.      */
  1172.     @DefaultDataContext
  1173.     private Object writeReplace() {
  1174.         return new DTO(this);
  1175.     }

  1176.     /** Internal class used only for serialization. */
  1177.     @DefaultDataContext
  1178.     private static class DTO implements Serializable {

  1179.         /** Serializable UID. */
  1180.         private static final long serialVersionUID = 20170414L;

  1181.         /** Double values. */
  1182.         private double[] d;

  1183.         /** Frame in which are defined the orbital parameters. */
  1184.         private final Frame frame;

  1185.         /** Simple constructor.
  1186.          * @param orbit instance to serialize
  1187.          */
  1188.         private DTO(final KeplerianOrbit orbit) {

  1189.             final TimeStampedPVCoordinates pv = orbit.getPVCoordinates();

  1190.             // decompose date
  1191.             final AbsoluteDate j2000Epoch =
  1192.                     DataContext.getDefault().getTimeScales().getJ2000Epoch();
  1193.             final double epoch  = FastMath.floor(pv.getDate().durationFrom(j2000Epoch));
  1194.             final double offset = pv.getDate().durationFrom(j2000Epoch.shiftedBy(epoch));

  1195.             if (orbit.hasDerivatives()) {
  1196.                 // we have derivatives
  1197.                 this.d = new double[] {
  1198.                     epoch, offset, orbit.getMu(),
  1199.                     orbit.a, orbit.e, orbit.i,
  1200.                     orbit.pa, orbit.raan, orbit.v,
  1201.                     orbit.aDot, orbit.eDot, orbit.iDot,
  1202.                     orbit.paDot, orbit.raanDot, orbit.vDot
  1203.                 };
  1204.             } else {
  1205.                 // we don't have derivatives
  1206.                 this.d = new double[] {
  1207.                     epoch, offset, orbit.getMu(),
  1208.                     orbit.a, orbit.e, orbit.i,
  1209.                     orbit.pa, orbit.raan, orbit.v
  1210.                 };
  1211.             }

  1212.             this.frame = orbit.getFrame();

  1213.         }

  1214.         /** Replace the deserialized data transfer object with a {@link KeplerianOrbit}.
  1215.          * @return replacement {@link KeplerianOrbit}
  1216.          */
  1217.         private Object readResolve() {
  1218.             final AbsoluteDate j2000Epoch =
  1219.                     DataContext.getDefault().getTimeScales().getJ2000Epoch();
  1220.             if (d.length >= 15) {
  1221.                 // we have derivatives
  1222.                 return new KeplerianOrbit(d[ 3], d[ 4], d[ 5], d[ 6], d[ 7], d[ 8],
  1223.                                           d[ 9], d[10], d[11], d[12], d[13], d[14],
  1224.                                           PositionAngleType.TRUE,
  1225.                                           frame, j2000Epoch.shiftedBy(d[0]).shiftedBy(d[1]),
  1226.                                           d[2]);
  1227.             } else {
  1228.                 // we don't have derivatives
  1229.                 return new KeplerianOrbit(d[3], d[4], d[5], d[6], d[7], d[8], PositionAngleType.TRUE,
  1230.                                           frame, j2000Epoch.shiftedBy(d[0]).shiftedBy(d[1]),
  1231.                                           d[2]);
  1232.             }
  1233.         }

  1234.     }

  1235. }