HolmesFeatherstoneAttractionModel.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.gravity;
import java.util.Collections;
import java.util.List;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.analysis.differentiation.DerivativeStructure;
import org.hipparchus.analysis.differentiation.Gradient;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.SphericalCoordinates;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.linear.Array2DRowRealMatrix;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.orekit.forces.ForceModel;
import org.orekit.forces.gravity.potential.NormalizedSphericalHarmonicsProvider;
import org.orekit.forces.gravity.potential.NormalizedSphericalHarmonicsProvider.NormalizedSphericalHarmonics;
import org.orekit.forces.gravity.potential.TideSystem;
import org.orekit.forces.gravity.potential.TideSystemProvider;
import org.orekit.frames.FieldStaticTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.StaticTransform;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.ParameterDriver;
/** This class represents the gravitational field of a celestial body.
* <p>
* The algorithm implemented in this class has been designed by S. A. Holmes
* and W. E. Featherstone from Department of Spatial Sciences, Curtin University
* of Technology, Perth, Australia. It is described in their 2002 paper: <a
* href="https://www.researchgate.net/publication/226460594_A_unified_approach_to_the_Clenshaw_summation_and_the_recursive_computation_of_very_high_degree_and_order_normalised_associated_Legendre_functions">
* A unified approach to he Clenshaw summation and the recursive computation of
* very high degree and order normalised associated Legendre functions</a>
* (Journal of Geodesy (2002) 76: 279–299).
* </p>
* <p>
* This model directly uses normalized coefficients and stable recursion algorithms
* so it is more suited to high degree gravity fields than the classical Cunningham
* Droziner models which use un-normalized coefficients.
* </p>
* <p>
* Among the different algorithms presented in Holmes and Featherstone paper, this
* class implements the <em>modified forward row method</em>. All recursion coefficients
* are precomputed and stored for greater performance. This caching was suggested in the
* paper but not used due to the large memory requirements. Since 2002, even low end
* computers and mobile devices do have sufficient memory so this caching has become
* feasible nowadays.
* </p>
* @author Luc Maisonobe
* @since 6.0
*/
public class HolmesFeatherstoneAttractionModel implements ForceModel, TideSystemProvider {
/** Exponent scaling to avoid floating point overflow.
* <p>The paper uses 10^280, we prefer a power of two to preserve accuracy thanks to
* {@link FastMath#scalb(double, int)}, so we use 2^930 which has the same order of magnitude.
*/
private static final int SCALING = 930;
/** Central attraction scaling factor.
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private static final double MU_SCALE = FastMath.scalb(1.0, 32);
/** Driver for gravitational parameter. */
private final ParameterDriver gmParameterDriver;
/** Provider for the spherical harmonics. */
private final NormalizedSphericalHarmonicsProvider provider;
/** Rotating body. */
private final Frame bodyFrame;
/** Recursion coefficients g<sub>n,m</sub>/√j. */
private final double[] gnmOj;
/** Recursion coefficients h<sub>n,m</sub>/√j. */
private final double[] hnmOj;
/** Recursion coefficients e<sub>n,m</sub>. */
private final double[] enm;
/** Scaled sectorial Pbar<sub>m,m</sub>/u<sup>m</sup> × 2<sup>-SCALING</sup>. */
private final double[] sectorial;
/** Creates a new instance.
* @param centralBodyFrame rotating body frame
* @param provider provider for spherical harmonics
* @since 6.0
*/
public HolmesFeatherstoneAttractionModel(final Frame centralBodyFrame,
final NormalizedSphericalHarmonicsProvider provider) {
gmParameterDriver = new ParameterDriver(NewtonianAttraction.CENTRAL_ATTRACTION_COEFFICIENT,
provider.getMu(), MU_SCALE, 0.0, Double.POSITIVE_INFINITY);
this.provider = provider;
this.bodyFrame = centralBodyFrame;
// the pre-computed arrays hold coefficients from triangular arrays in a single
// storing neither diagonal elements (n = m) nor the non-diagonal element n=1, m=0
final int degree = provider.getMaxDegree();
final int size = FastMath.max(0, degree * (degree + 1) / 2 - 1);
gnmOj = new double[size];
hnmOj = new double[size];
enm = new double[size];
// pre-compute the recursion coefficients corresponding to equations 19 and 22
// from Holmes and Featherstone paper
// for cache efficiency, elements are stored in the same order they will be used
// later on, i.e. from rightmost column to leftmost column
int index = 0;
for (int m = degree; m >= 0; --m) {
final int j = (m == 0) ? 2 : 1;
for (int n = FastMath.max(2, m + 1); n <= degree; ++n) {
final double f = (n - m) * (n + m + 1);
gnmOj[index] = 2 * (m + 1) / FastMath.sqrt(j * f);
hnmOj[index] = FastMath.sqrt((n + m + 2) * (n - m - 1) / (j * f));
enm[index] = FastMath.sqrt(f / j);
++index;
}
}
// scaled sectorial terms corresponding to equation 28 in Holmes and Featherstone paper
sectorial = new double[degree + 1];
sectorial[0] = FastMath.scalb(1.0, -SCALING);
if (degree > 0) {
sectorial[1] = FastMath.sqrt(3) * sectorial[0];
}
for (int m = 2; m < sectorial.length; ++m) {
sectorial[m] = FastMath.sqrt((2 * m + 1) / (2.0 * m)) * sectorial[m - 1];
}
}
/** {@inheritDoc} */
@Override
public boolean dependsOnPositionOnly() {
return true;
}
/** {@inheritDoc} */
public TideSystem getTideSystem() {
return provider.getTideSystem();
}
/** Get the central attraction coefficient μ.
* @return mu central attraction coefficient (m³/s²),
* will throw an exception if gm PDriver has several
* values driven (in this case the method
* {@link #getMu(AbsoluteDate)} must be used.
*/
public double getMu() {
return gmParameterDriver.getValue();
}
/** Get the central attraction coefficient μ.
* @param date date at which mu wants to be known
* @return mu central attraction coefficient (m³/s²)
*/
public double getMu(final AbsoluteDate date) {
return gmParameterDriver.getValue(date);
}
/** Compute the value of the gravity field.
* @param date current date
* @param position position at which gravity field is desired in body frame
* @param mu central attraction coefficient to use
* @return value of the gravity field (central and non-central parts summed together)
*/
public double value(final AbsoluteDate date, final Vector3D position,
final double mu) {
return mu / position.getNorm() + nonCentralPart(date, position, mu);
}
/** Compute the non-central part of the gravity field.
* @param date current date
* @param position position at which gravity field is desired in body frame
* @param mu central attraction coefficient to use
* @return value of the non-central part of the gravity field
*/
public double nonCentralPart(final AbsoluteDate date, final Vector3D position, final double mu) {
final int degree = provider.getMaxDegree();
final int order = provider.getMaxOrder();
final NormalizedSphericalHarmonics harmonics = provider.onDate(date);
// allocate the columns for recursion
double[] pnm0Plus2 = new double[degree + 1];
double[] pnm0Plus1 = new double[degree + 1];
double[] pnm0 = new double[degree + 1];
// compute polar coordinates
final double x = position.getX();
final double y = position.getY();
final double z = position.getZ();
final double x2 = x * x;
final double y2 = y * y;
final double z2 = z * z;
final double rho2 = x2 + y2;
final double r2 = rho2 + z2;
final double r = FastMath.sqrt(r2);
final double rho = FastMath.sqrt(rho2);
final double t = z / r; // cos(theta), where theta is the polar angle
final double u = rho / r; // sin(theta), where theta is the polar angle
final double tOu = z / rho;
// compute distance powers
final double[] aOrN = createDistancePowersArray(provider.getAe() / r);
// compute longitude cosines/sines
final double[][] cosSinLambda = createCosSinArrays(x / rho, y / rho);
// outer summation over order
int index = 0;
double value = 0;
for (int m = degree; m >= 0; --m) {
// compute tesseral terms without derivatives
index = computeTesseral(m, degree, index, t, u, tOu,
pnm0Plus2, pnm0Plus1, null, pnm0, null, null);
if (m <= order) {
// compute contribution of current order to field (equation 5 of the paper)
// inner summation over degree, for fixed order
double sumDegreeS = 0;
double sumDegreeC = 0;
for (int n = FastMath.max(2, m); n <= degree; ++n) {
sumDegreeS += pnm0[n] * aOrN[n] * harmonics.getNormalizedSnm(n, m);
sumDegreeC += pnm0[n] * aOrN[n] * harmonics.getNormalizedCnm(n, m);
}
// contribution to outer summation over order
value = value * u + cosSinLambda[1][m] * sumDegreeS + cosSinLambda[0][m] * sumDegreeC;
}
// rotate the recursion arrays
final double[] tmp = pnm0Plus2;
pnm0Plus2 = pnm0Plus1;
pnm0Plus1 = pnm0;
pnm0 = tmp;
}
// scale back
value = FastMath.scalb(value, SCALING);
// apply the global mu/r factor
return mu * value / r;
}
/** Compute the gradient of the non-central part of the gravity field.
* @param date current date
* @param position position at which gravity field is desired in body frame
* @param mu central attraction coefficient to use
* @return gradient of the non-central part of the gravity field
*/
public double[] gradient(final AbsoluteDate date, final Vector3D position, final double mu) {
final int degree = provider.getMaxDegree();
final int order = provider.getMaxOrder();
final NormalizedSphericalHarmonics harmonics = provider.onDate(date);
// allocate the columns for recursion
double[] pnm0Plus2 = new double[degree + 1];
double[] pnm0Plus1 = new double[degree + 1];
double[] pnm0 = new double[degree + 1];
final double[] pnm1 = new double[degree + 1];
// compute polar coordinates
final double x = position.getX();
final double y = position.getY();
final double z = position.getZ();
final double x2 = x * x;
final double y2 = y * y;
final double z2 = z * z;
final double r2 = x2 + y2 + z2;
final double r = FastMath.sqrt (r2);
final double rho2 = x2 + y2;
final double rho = FastMath.sqrt(rho2);
final double t = z / r; // cos(theta), where theta is the polar angle
final double u = rho / r; // sin(theta), where theta is the polar angle
final double tOu = z / rho;
// compute distance powers
final double[] aOrN = createDistancePowersArray(provider.getAe() / r);
// compute longitude cosines/sines
final double[][] cosSinLambda = createCosSinArrays(x / rho, y / rho);
// outer summation over order
int index = 0;
double value = 0;
final double[] gradient = new double[3];
for (int m = degree; m >= 0; --m) {
// compute tesseral terms with derivatives
index = computeTesseral(m, degree, index, t, u, tOu,
pnm0Plus2, pnm0Plus1, null, pnm0, pnm1, null);
if (m <= order) {
// compute contribution of current order to field (equation 5 of the paper)
// inner summation over degree, for fixed order
double sumDegreeS = 0;
double sumDegreeC = 0;
double dSumDegreeSdR = 0;
double dSumDegreeCdR = 0;
double dSumDegreeSdTheta = 0;
double dSumDegreeCdTheta = 0;
for (int n = FastMath.max(2, m); n <= degree; ++n) {
final double qSnm = aOrN[n] * harmonics.getNormalizedSnm(n, m);
final double qCnm = aOrN[n] * harmonics.getNormalizedCnm(n, m);
final double nOr = n / r;
final double s0 = pnm0[n] * qSnm;
final double c0 = pnm0[n] * qCnm;
final double s1 = pnm1[n] * qSnm;
final double c1 = pnm1[n] * qCnm;
sumDegreeS += s0;
sumDegreeC += c0;
dSumDegreeSdR -= nOr * s0;
dSumDegreeCdR -= nOr * c0;
dSumDegreeSdTheta += s1;
dSumDegreeCdTheta += c1;
}
// contribution to outer summation over order
// beware that we need to order gradient using the mathematical conventions
// compliant with the SphericalCoordinates class, so our lambda is its theta
// (and hence at index 1) and our theta is its phi (and hence at index 2)
final double sML = cosSinLambda[1][m];
final double cML = cosSinLambda[0][m];
value = value * u + sML * sumDegreeS + cML * sumDegreeC;
gradient[0] = gradient[0] * u + sML * dSumDegreeSdR + cML * dSumDegreeCdR;
gradient[1] = gradient[1] * u + m * (cML * sumDegreeS - sML * sumDegreeC);
gradient[2] = gradient[2] * u + sML * dSumDegreeSdTheta + cML * dSumDegreeCdTheta;
}
// rotate the recursion arrays
final double[] tmp = pnm0Plus2;
pnm0Plus2 = pnm0Plus1;
pnm0Plus1 = pnm0;
pnm0 = tmp;
}
// scale back
value = FastMath.scalb(value, SCALING);
gradient[0] = FastMath.scalb(gradient[0], SCALING);
gradient[1] = FastMath.scalb(gradient[1], SCALING);
gradient[2] = FastMath.scalb(gradient[2], SCALING);
// apply the global mu/r factor
final double muOr = mu / r;
value *= muOr;
gradient[0] = muOr * gradient[0] - value / r;
gradient[1] *= muOr;
gradient[2] *= muOr;
// convert gradient from spherical to Cartesian
return new SphericalCoordinates(position).toCartesianGradient(gradient);
}
/** Compute the gradient of the non-central part of the gravity field.
* @param date current date
* @param position position at which gravity field is desired in body frame
* @param mu central attraction coefficient to use
* @param <T> type of field used
* @return gradient of the non-central part of the gravity field
*/
public <T extends CalculusFieldElement<T>> T[] gradient(final FieldAbsoluteDate<T> date, final FieldVector3D<T> position,
final T mu) {
final int degree = provider.getMaxDegree();
final int order = provider.getMaxOrder();
final NormalizedSphericalHarmonics harmonics = provider.onDate(date.toAbsoluteDate());
final T zero = date.getField().getZero();
// allocate the columns for recursion
T[] pnm0Plus2 = MathArrays.buildArray(date.getField(), degree + 1);
T[] pnm0Plus1 = MathArrays.buildArray(date.getField(), degree + 1);
T[] pnm0 = MathArrays.buildArray(date.getField(), degree + 1);
final T[] pnm1 = MathArrays.buildArray(date.getField(), degree + 1);
// compute polar coordinates
final T x = position.getX();
final T y = position.getY();
final T z = position.getZ();
final T x2 = x.multiply(x);
final T y2 = y.multiply(y);
final T rho2 = x2.add(y2);
final T rho = rho2.sqrt();
final T z2 = z.multiply(z);
final T r2 = rho2.add(z2);
final T r = r2.sqrt();
final T t = z.divide(r); // cos(theta), where theta is the polar angle
final T u = rho.divide(r); // sin(theta), where theta is the polar angle
final T tOu = z.divide(rho);
// compute distance powers
final T[] aOrN = createDistancePowersArray(r.reciprocal().multiply(provider.getAe()));
// compute longitude cosines/sines
final T[][] cosSinLambda = createCosSinArrays(x.divide(rho), y.divide(rho));
// outer summation over order
int index = 0;
T value = zero;
final T[] gradient = MathArrays.buildArray(zero.getField(), 3);
for (int m = degree; m >= 0; --m) {
// compute tesseral terms with derivatives
index = computeTesseral(m, degree, index, t, u, tOu,
pnm0Plus2, pnm0Plus1, null, pnm0, pnm1, null);
if (m <= order) {
// compute contribution of current order to field (equation 5 of the paper)
// inner summation over degree, for fixed order
T sumDegreeS = zero;
T sumDegreeC = zero;
T dSumDegreeSdR = zero;
T dSumDegreeCdR = zero;
T dSumDegreeSdTheta = zero;
T dSumDegreeCdTheta = zero;
for (int n = FastMath.max(2, m); n <= degree; ++n) {
final T qSnm = aOrN[n].multiply(harmonics.getNormalizedSnm(n, m));
final T qCnm = aOrN[n].multiply(harmonics.getNormalizedCnm(n, m));
final T nOr = r.reciprocal().multiply(n);
final T s0 = pnm0[n].multiply(qSnm);
final T c0 = pnm0[n].multiply(qCnm);
final T s1 = pnm1[n].multiply(qSnm);
final T c1 = pnm1[n].multiply(qCnm);
sumDegreeS = sumDegreeS .add(s0);
sumDegreeC = sumDegreeC .add(c0);
dSumDegreeSdR = dSumDegreeSdR .subtract(nOr.multiply(s0));
dSumDegreeCdR = dSumDegreeCdR .subtract(nOr.multiply(c0));
dSumDegreeSdTheta = dSumDegreeSdTheta.add(s1);
dSumDegreeCdTheta = dSumDegreeCdTheta.add(c1);
}
// contribution to outer summation over order
// beware that we need to order gradient using the mathematical conventions
// compliant with the SphericalCoordinates class, so our lambda is its theta
// (and hence at index 1) and our theta is its phi (and hence at index 2)
final T sML = cosSinLambda[1][m];
final T cML = cosSinLambda[0][m];
value = value .multiply(u).add(sML.multiply(sumDegreeS )).add(cML.multiply(sumDegreeC));
gradient[0] = gradient[0].multiply(u).add(sML.multiply(dSumDegreeSdR)).add(cML.multiply(dSumDegreeCdR));
gradient[1] = gradient[1].multiply(u).add(cML.multiply(sumDegreeS).subtract(sML.multiply(sumDegreeC)).multiply(m));
gradient[2] = gradient[2].multiply(u).add(sML.multiply(dSumDegreeSdTheta)).add(cML.multiply(dSumDegreeCdTheta));
}
// rotate the recursion arrays
final T[] tmp = pnm0Plus2;
pnm0Plus2 = pnm0Plus1;
pnm0Plus1 = pnm0;
pnm0 = tmp;
}
// scale back
value = value.scalb(SCALING);
gradient[0] = gradient[0].scalb(SCALING);
gradient[1] = gradient[1].scalb(SCALING);
gradient[2] = gradient[2].scalb(SCALING);
// apply the global mu/r factor
final T muOr = r.reciprocal().multiply(mu);
value = value.multiply(muOr);
gradient[0] = muOr.multiply(gradient[0]).subtract(value.divide(r));
gradient[1] = gradient[1].multiply(muOr);
gradient[2] = gradient[2].multiply(muOr);
// convert gradient from spherical to Cartesian
// Cartesian coordinates
// remaining spherical coordinates
// intermediate variables
final T xPos = position.getX();
final T yPos = position.getY();
final T zPos = position.getZ();
final T rho2Pos = x.multiply(x).add(y.multiply(y));
final T rhoPos = rho2.sqrt();
final T r2Pos = rho2.add(z.multiply(z));
final T rPos = r2Pos.sqrt();
final T[][] jacobianPos = MathArrays.buildArray(zero.getField(), 3, 3);
// row representing the gradient of r
jacobianPos[0][0] = xPos.divide(rPos);
jacobianPos[0][1] = yPos.divide(rPos);
jacobianPos[0][2] = zPos.divide(rPos);
// row representing the gradient of theta
jacobianPos[1][0] = yPos.negate().divide(rho2Pos);
jacobianPos[1][1] = xPos.divide(rho2Pos);
// jacobian[1][2] is already set to 0 at allocation time
// row representing the gradient of phi
final T rhoPosTimesR2Pos = rhoPos.multiply(r2Pos);
jacobianPos[2][0] = xPos.multiply(zPos).divide(rhoPosTimesR2Pos);
jacobianPos[2][1] = yPos.multiply(zPos).divide(rhoPosTimesR2Pos);
jacobianPos[2][2] = rhoPos.negate().divide(r2Pos);
final T[] cartGradPos = MathArrays.buildArray(zero.getField(), 3);
cartGradPos[0] = gradient[0].multiply(jacobianPos[0][0]).add(gradient[1].multiply(jacobianPos[1][0])).add(gradient[2].multiply(jacobianPos[2][0]));
cartGradPos[1] = gradient[0].multiply(jacobianPos[0][1]).add(gradient[1].multiply(jacobianPos[1][1])).add(gradient[2].multiply(jacobianPos[2][1]));
cartGradPos[2] = gradient[0].multiply(jacobianPos[0][2]) .add(gradient[2].multiply(jacobianPos[2][2]));
return cartGradPos;
}
/** Compute both the gradient and the hessian of the non-central part of the gravity field.
* @param date current date
* @param position position at which gravity field is desired in body frame
* @param mu central attraction coefficient to use
* @return gradient and hessian of the non-central part of the gravity field
*/
private GradientHessian gradientHessian(final AbsoluteDate date, final Vector3D position, final double mu) {
final int degree = provider.getMaxDegree();
final int order = provider.getMaxOrder();
final NormalizedSphericalHarmonics harmonics = provider.onDate(date);
// allocate the columns for recursion
double[] pnm0Plus2 = new double[degree + 1];
double[] pnm0Plus1 = new double[degree + 1];
double[] pnm0 = new double[degree + 1];
double[] pnm1Plus1 = new double[degree + 1];
double[] pnm1 = new double[degree + 1];
final double[] pnm2 = new double[degree + 1];
// compute polar coordinates
final double x = position.getX();
final double y = position.getY();
final double z = position.getZ();
final double x2 = x * x;
final double y2 = y * y;
final double z2 = z * z;
final double rho2 = x2 + y2;
final double rho = FastMath.sqrt(rho2);
final double r2 = rho2 + z2;
final double r = FastMath.sqrt(r2);
final double t = z / r; // cos(theta), where theta is the polar angle
final double u = rho / r; // sin(theta), where theta is the polar angle
final double tOu = z / rho;
// compute distance powers
final double[] aOrN = createDistancePowersArray(provider.getAe() / r);
// compute longitude cosines/sines
final double[][] cosSinLambda = createCosSinArrays(x / rho, y / rho);
// outer summation over order
int index = 0;
double value = 0;
final double[] gradient = new double[3];
final double[][] hessian = new double[3][3];
for (int m = degree; m >= 0; --m) {
// compute tesseral terms
index = computeTesseral(m, degree, index, t, u, tOu,
pnm0Plus2, pnm0Plus1, pnm1Plus1, pnm0, pnm1, pnm2);
if (m <= order) {
// compute contribution of current order to field (equation 5 of the paper)
// inner summation over degree, for fixed order
double sumDegreeS = 0;
double sumDegreeC = 0;
double dSumDegreeSdR = 0;
double dSumDegreeCdR = 0;
double dSumDegreeSdTheta = 0;
double dSumDegreeCdTheta = 0;
double d2SumDegreeSdRdR = 0;
double d2SumDegreeSdRdTheta = 0;
double d2SumDegreeSdThetadTheta = 0;
double d2SumDegreeCdRdR = 0;
double d2SumDegreeCdRdTheta = 0;
double d2SumDegreeCdThetadTheta = 0;
for (int n = FastMath.max(2, m); n <= degree; ++n) {
final double qSnm = aOrN[n] * harmonics.getNormalizedSnm(n, m);
final double qCnm = aOrN[n] * harmonics.getNormalizedCnm(n, m);
final double nOr = n / r;
final double nnP1Or2 = nOr * (n + 1) / r;
final double s0 = pnm0[n] * qSnm;
final double c0 = pnm0[n] * qCnm;
final double s1 = pnm1[n] * qSnm;
final double c1 = pnm1[n] * qCnm;
final double s2 = pnm2[n] * qSnm;
final double c2 = pnm2[n] * qCnm;
sumDegreeS += s0;
sumDegreeC += c0;
dSumDegreeSdR -= nOr * s0;
dSumDegreeCdR -= nOr * c0;
dSumDegreeSdTheta += s1;
dSumDegreeCdTheta += c1;
d2SumDegreeSdRdR += nnP1Or2 * s0;
d2SumDegreeSdRdTheta -= nOr * s1;
d2SumDegreeSdThetadTheta += s2;
d2SumDegreeCdRdR += nnP1Or2 * c0;
d2SumDegreeCdRdTheta -= nOr * c1;
d2SumDegreeCdThetadTheta += c2;
}
// contribution to outer summation over order
final double sML = cosSinLambda[1][m];
final double cML = cosSinLambda[0][m];
value = value * u + sML * sumDegreeS + cML * sumDegreeC;
gradient[0] = gradient[0] * u + sML * dSumDegreeSdR + cML * dSumDegreeCdR;
gradient[1] = gradient[1] * u + m * (cML * sumDegreeS - sML * sumDegreeC);
gradient[2] = gradient[2] * u + sML * dSumDegreeSdTheta + cML * dSumDegreeCdTheta;
hessian[0][0] = hessian[0][0] * u + sML * d2SumDegreeSdRdR + cML * d2SumDegreeCdRdR;
hessian[1][0] = hessian[1][0] * u + m * (cML * dSumDegreeSdR - sML * dSumDegreeCdR);
hessian[2][0] = hessian[2][0] * u + sML * d2SumDegreeSdRdTheta + cML * d2SumDegreeCdRdTheta;
hessian[1][1] = hessian[1][1] * u - m * m * (sML * sumDegreeS + cML * sumDegreeC);
hessian[2][1] = hessian[2][1] * u + m * (cML * dSumDegreeSdTheta - sML * dSumDegreeCdTheta);
hessian[2][2] = hessian[2][2] * u + sML * d2SumDegreeSdThetadTheta + cML * d2SumDegreeCdThetadTheta;
}
// rotate the recursion arrays
final double[] tmp0 = pnm0Plus2;
pnm0Plus2 = pnm0Plus1;
pnm0Plus1 = pnm0;
pnm0 = tmp0;
final double[] tmp1 = pnm1Plus1;
pnm1Plus1 = pnm1;
pnm1 = tmp1;
}
// scale back
value = FastMath.scalb(value, SCALING);
for (int i = 0; i < 3; ++i) {
gradient[i] = FastMath.scalb(gradient[i], SCALING);
for (int j = 0; j <= i; ++j) {
hessian[i][j] = FastMath.scalb(hessian[i][j], SCALING);
}
}
// apply the global mu/r factor
final double muOr = mu / r;
value *= muOr;
gradient[0] = muOr * gradient[0] - value / r;
gradient[1] *= muOr;
gradient[2] *= muOr;
hessian[0][0] = muOr * hessian[0][0] - 2 * gradient[0] / r;
hessian[1][0] = muOr * hessian[1][0] - gradient[1] / r;
hessian[2][0] = muOr * hessian[2][0] - gradient[2] / r;
hessian[1][1] *= muOr;
hessian[2][1] *= muOr;
hessian[2][2] *= muOr;
// convert gradient and Hessian from spherical to Cartesian
final SphericalCoordinates sc = new SphericalCoordinates(position);
return new GradientHessian(sc.toCartesianGradient(gradient),
sc.toCartesianHessian(hessian, gradient));
}
/** Container for gradient and Hessian. */
private static class GradientHessian {
/** Gradient. */
private final double[] gradient;
/** Hessian. */
private final double[][] hessian;
/** Simple constructor.
* <p>
* A reference to the arrays is stored, they are <strong>not</strong> cloned.
* </p>
* @param gradient gradient
* @param hessian hessian
*/
GradientHessian(final double[] gradient, final double[][] hessian) {
this.gradient = gradient;
this.hessian = hessian;
}
/** Get a reference to the gradient.
* @return gradient (a reference to the internal array is returned)
*/
public double[] getGradient() {
return gradient;
}
/** Get a reference to the Hessian.
* @return Hessian (a reference to the internal array is returned)
*/
public double[][] getHessian() {
return hessian;
}
}
/** Compute a/r powers array.
* @param aOr a/r
* @return array containing (a/r)<sup>n</sup>
*/
private double[] createDistancePowersArray(final double aOr) {
// initialize array
final double[] aOrN = new double[provider.getMaxDegree() + 1];
aOrN[0] = 1;
if (provider.getMaxDegree() > 0) {
aOrN[1] = aOr;
}
// fill up array
for (int n = 2; n < aOrN.length; ++n) {
final int p = n / 2;
final int q = n - p;
aOrN[n] = aOrN[p] * aOrN[q];
}
return aOrN;
}
/** Compute a/r powers array.
* @param aOr a/r
* @param <T> type of field used
* @return array containing (a/r)<sup>n</sup>
*/
private <T extends CalculusFieldElement<T>> T[] createDistancePowersArray(final T aOr) {
// initialize array
final T[] aOrN = MathArrays.buildArray(aOr.getField(), provider.getMaxDegree() + 1);
aOrN[0] = aOr.getField().getOne();
if (provider.getMaxDegree() > 0) {
aOrN[1] = aOr;
}
// fill up array
for (int n = 2; n < aOrN.length; ++n) {
final int p = n / 2;
final int q = n - p;
aOrN[n] = aOrN[p].multiply(aOrN[q]);
}
return aOrN;
}
/** Compute longitude cosines and sines.
* @param cosLambda cos(λ)
* @param sinLambda sin(λ)
* @return array containing cos(m × λ) in row 0
* and sin(m × λ) in row 1
*/
private double[][] createCosSinArrays(final double cosLambda, final double sinLambda) {
// initialize arrays
final double[][] cosSin = new double[2][provider.getMaxOrder() + 1];
cosSin[0][0] = 1;
cosSin[1][0] = 0;
if (provider.getMaxOrder() > 0) {
cosSin[0][1] = cosLambda;
cosSin[1][1] = sinLambda;
// fill up array
for (int m = 2; m < cosSin[0].length; ++m) {
// m * lambda is split as p * lambda + q * lambda, trying to avoid
// p or q being much larger than the other. This reduces the number of
// intermediate results reused to compute each value, and hence should limit
// as much as possible roundoff error accumulation
// (this does not change the number of floating point operations)
final int p = m / 2;
final int q = m - p;
cosSin[0][m] = cosSin[0][p] * cosSin[0][q] - cosSin[1][p] * cosSin[1][q];
cosSin[1][m] = cosSin[1][p] * cosSin[0][q] + cosSin[0][p] * cosSin[1][q];
}
}
return cosSin;
}
/** Compute longitude cosines and sines.
* @param cosLambda cos(λ)
* @param sinLambda sin(λ)
* @param <T> type of field used
* @return array containing cos(m × λ) in row 0
* and sin(m × λ) in row 1
*/
private <T extends CalculusFieldElement<T>> T[][] createCosSinArrays(final T cosLambda, final T sinLambda) {
final T one = cosLambda.getField().getOne();
final T zero = cosLambda.getField().getZero();
// initialize arrays
final T[][] cosSin = MathArrays.buildArray(one.getField(), 2, provider.getMaxOrder() + 1);
cosSin[0][0] = one;
cosSin[1][0] = zero;
if (provider.getMaxOrder() > 0) {
cosSin[0][1] = cosLambda;
cosSin[1][1] = sinLambda;
// fill up array
for (int m = 2; m < cosSin[0].length; ++m) {
// m * lambda is split as p * lambda + q * lambda, trying to avoid
// p or q being much larger than the other. This reduces the number of
// intermediate results reused to compute each value, and hence should limit
// as much as possible roundoff error accumulation
// (this does not change the number of floating point operations)
final int p = m / 2;
final int q = m - p;
cosSin[0][m] = cosSin[0][p].multiply(cosSin[0][q]).subtract(cosSin[1][p].multiply(cosSin[1][q]));
cosSin[1][m] = cosSin[1][p].multiply(cosSin[0][q]).add(cosSin[0][p].multiply(cosSin[1][q]));
}
}
return cosSin;
}
/** Compute one order of tesseral terms.
* <p>
* This corresponds to equations 27 and 30 of the paper.
* </p>
* @param m current order
* @param degree max degree
* @param index index in the flattened array
* @param t cos(θ), where θ is the polar angle
* @param u sin(θ), where θ is the polar angle
* @param tOu t/u
* @param pnm0Plus2 array containing scaled P<sub>n,m+2</sub>/u<sup>m+2</sup>
* @param pnm0Plus1 array containing scaled P<sub>n,m+1</sub>/u<sup>m+1</sup>
* @param pnm1Plus1 array containing scaled dP<sub>n,m+1</sub>/u<sup>m+1</sup>
* (may be null if second derivatives are not needed)
* @param pnm0 array to fill with scaled P<sub>n,m</sub>/u<sup>m</sup>
* @param pnm1 array to fill with scaled dP<sub>n,m</sub>/u<sup>m</sup>
* (may be null if first derivatives are not needed)
* @param pnm2 array to fill with scaled d²P<sub>n,m</sub>/u<sup>m</sup>
* (may be null if second derivatives are not needed)
* @return new value for index
*/
private int computeTesseral(final int m, final int degree, final int index,
final double t, final double u, final double tOu,
final double[] pnm0Plus2, final double[] pnm0Plus1, final double[] pnm1Plus1,
final double[] pnm0, final double[] pnm1, final double[] pnm2) {
final double u2 = u * u;
// initialize recursion from sectorial terms
int n = FastMath.max(2, m);
if (n == m) {
pnm0[n] = sectorial[n];
++n;
}
// compute tesseral values
int localIndex = index;
while (n <= degree) {
// value (equation 27 of the paper)
pnm0[n] = gnmOj[localIndex] * t * pnm0Plus1[n] - hnmOj[localIndex] * u2 * pnm0Plus2[n];
++localIndex;
++n;
}
if (pnm1 != null) {
// initialize recursion from sectorial terms
n = FastMath.max(2, m);
if (n == m) {
pnm1[n] = m * tOu * pnm0[n];
++n;
}
// compute tesseral values and derivatives with respect to polar angle
localIndex = index;
while (n <= degree) {
// first derivative (equation 30 of the paper)
pnm1[n] = m * tOu * pnm0[n] - enm[localIndex] * u * pnm0Plus1[n];
++localIndex;
++n;
}
if (pnm2 != null) {
// initialize recursion from sectorial terms
n = FastMath.max(2, m);
if (n == m) {
pnm2[n] = m * (tOu * pnm1[n] - pnm0[n] / u2);
++n;
}
// compute tesseral values and derivatives with respect to polar angle
localIndex = index;
while (n <= degree) {
// second derivative (differential of equation 30 with respect to theta)
pnm2[n] = m * (tOu * pnm1[n] - pnm0[n] / u2) - enm[localIndex] * u * pnm1Plus1[n];
++localIndex;
++n;
}
}
}
return localIndex;
}
/** Compute one order of tesseral terms.
* <p>
* This corresponds to equations 27 and 30 of the paper.
* </p>
* @param m current order
* @param degree max degree
* @param index index in the flattened array
* @param t cos(θ), where θ is the polar angle
* @param u sin(θ), where θ is the polar angle
* @param tOu t/u
* @param pnm0Plus2 array containing scaled P<sub>n,m+2</sub>/u<sup>m+2</sup>
* @param pnm0Plus1 array containing scaled P<sub>n,m+1</sub>/u<sup>m+1</sup>
* @param pnm1Plus1 array containing scaled dP<sub>n,m+1</sub>/u<sup>m+1</sup>
* (may be null if second derivatives are not needed)
* @param pnm0 array to fill with scaled P<sub>n,m</sub>/u<sup>m</sup>
* @param pnm1 array to fill with scaled dP<sub>n,m</sub>/u<sup>m</sup>
* (may be null if first derivatives are not needed)
* @param pnm2 array to fill with scaled d²P<sub>n,m</sub>/u<sup>m</sup>
* (may be null if second derivatives are not needed)
* @param <T> instance of field element
* @return new value for index
*/
private <T extends CalculusFieldElement<T>> int computeTesseral(final int m, final int degree, final int index,
final T t, final T u, final T tOu,
final T[] pnm0Plus2, final T[] pnm0Plus1, final T[] pnm1Plus1,
final T[] pnm0, final T[] pnm1, final T[] pnm2) {
final T u2 = u.multiply(u);
final T zero = u.getField().getZero();
// initialize recursion from sectorial terms
int n = FastMath.max(2, m);
if (n == m) {
pnm0[n] = zero.add(sectorial[n]);
++n;
}
// compute tesseral values
int localIndex = index;
while (n <= degree) {
// value (equation 27 of the paper)
pnm0[n] = t.multiply(gnmOj[localIndex]).multiply(pnm0Plus1[n]).subtract(u2.multiply(pnm0Plus2[n]).multiply(hnmOj[localIndex]));
++localIndex;
++n;
}
if (pnm1 != null) {
// initialize recursion from sectorial terms
n = FastMath.max(2, m);
if (n == m) {
pnm1[n] = tOu.multiply(m).multiply(pnm0[n]);
++n;
}
// compute tesseral values and derivatives with respect to polar angle
localIndex = index;
while (n <= degree) {
// first derivative (equation 30 of the paper)
pnm1[n] = tOu.multiply(m).multiply(pnm0[n]).subtract(u.multiply(enm[localIndex]).multiply(pnm0Plus1[n]));
++localIndex;
++n;
}
if (pnm2 != null) {
// initialize recursion from sectorial terms
n = FastMath.max(2, m);
if (n == m) {
pnm2[n] = tOu.multiply(pnm1[n]).subtract(pnm0[n].divide(u2)).multiply(m);
++n;
}
// compute tesseral values and derivatives with respect to polar angle
localIndex = index;
while (n <= degree) {
// second derivative (differential of equation 30 with respect to theta)
pnm2[n] = tOu.multiply(pnm1[n]).subtract(pnm0[n].divide(u2)).multiply(m).subtract(u.multiply(pnm1Plus1[n]).multiply(enm[localIndex]));
++localIndex;
++n;
}
}
}
return localIndex;
}
/** {@inheritDoc} */
@Override
public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {
final double mu = parameters[0];
// get the position in body frame
final AbsoluteDate date = s.getDate();
final StaticTransform fromBodyFrame = bodyFrame.getStaticTransformTo(s.getFrame(), date);
final StaticTransform toBodyFrame = fromBodyFrame.getInverse();
final Vector3D position = toBodyFrame.transformPosition(s.getPosition());
// gradient of the non-central part of the gravity field
return fromBodyFrame.transformVector(new Vector3D(gradient(date, position, mu)));
}
/** {@inheritDoc} */
public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
final T[] parameters) {
final T mu = parameters[0];
// check for faster computation dedicated to derivatives with respect to state
if (isGradientStateDerivative(s)) {
@SuppressWarnings("unchecked")
final FieldVector3D<Gradient> p = (FieldVector3D<Gradient>) s.getPosition();
@SuppressWarnings("unchecked")
final FieldVector3D<T> a = (FieldVector3D<T>) accelerationWrtState(s.getDate().toAbsoluteDate(),
s.getFrame(), p,
(Gradient) mu);
return a;
} else if (isDSStateDerivative(s)) {
@SuppressWarnings("unchecked")
final FieldVector3D<DerivativeStructure> p = (FieldVector3D<DerivativeStructure>) s.getPosition();
@SuppressWarnings("unchecked")
final FieldVector3D<T> a = (FieldVector3D<T>) accelerationWrtState(s.getDate().toAbsoluteDate(),
s.getFrame(), p,
(DerivativeStructure) mu);
return a;
}
// get the position in body frame
final FieldAbsoluteDate<T> date = s.getDate();
final FieldStaticTransform<T> fromBodyFrame = bodyFrame.getStaticTransformTo(s.getFrame(), date);
final FieldStaticTransform<T> toBodyFrame = fromBodyFrame.getInverse();
final FieldVector3D<T> position = toBodyFrame.transformPosition(s.getPosition());
// gradient of the non-central part of the gravity field
return fromBodyFrame.transformVector(new FieldVector3D<>(gradient(date, position, mu)));
}
/** Check if a field state corresponds to derivatives with respect to state.
* @param state state to check
* @param <T> type of the filed elements
* @return true if state corresponds to derivatives with respect to state
* @since 9.0
*/
private <T extends CalculusFieldElement<T>> boolean isDSStateDerivative(final FieldSpacecraftState<T> state) {
try {
final DerivativeStructure dsMass = (DerivativeStructure) state.getMass();
final int o = dsMass.getOrder();
final int p = dsMass.getFreeParameters();
if (o != 1 || p < 3) {
return false;
}
@SuppressWarnings("unchecked")
final FieldPVCoordinates<DerivativeStructure> pv = (FieldPVCoordinates<DerivativeStructure>) state.getPVCoordinates();
return isVariable(pv.getPosition().getX(), 0) &&
isVariable(pv.getPosition().getY(), 1) &&
isVariable(pv.getPosition().getZ(), 2);
} catch (ClassCastException cce) {
return false;
}
}
/** Check if a field state corresponds to derivatives with respect to state.
* @param state state to check
* @param <T> type of the filed elements
* @return true if state corresponds to derivatives with respect to state
* @since 10.2
*/
private <T extends CalculusFieldElement<T>> boolean isGradientStateDerivative(final FieldSpacecraftState<T> state) {
try {
final Gradient gMass = (Gradient) state.getMass();
final int p = gMass.getFreeParameters();
if (p < 3) {
return false;
}
@SuppressWarnings("unchecked")
final FieldPVCoordinates<Gradient> pv = (FieldPVCoordinates<Gradient>) state.getPVCoordinates();
return isVariable(pv.getPosition().getX(), 0) &&
isVariable(pv.getPosition().getY(), 1) &&
isVariable(pv.getPosition().getZ(), 2);
} catch (ClassCastException cce) {
return false;
}
}
/** Check if a derivative represents a specified variable.
* @param ds derivative to check
* @param index index of the variable
* @return true if the derivative represents a specified variable
* @since 9.0
*/
private boolean isVariable(final DerivativeStructure ds, final int index) {
final double[] derivatives = ds.getAllDerivatives();
boolean check = true;
for (int i = 1; i < derivatives.length; ++i) {
check &= derivatives[i] == ((index + 1 == i) ? 1.0 : 0.0);
}
return check;
}
/** Check if a derivative represents a specified variable.
* @param g derivative to check
* @param index index of the variable
* @return true if the derivative represents a specified variable
* @since 10.2
*/
private boolean isVariable(final Gradient g, final int index) {
final double[] derivatives = g.getGradient();
boolean check = true;
for (int i = 0; i < derivatives.length; ++i) {
check &= derivatives[i] == ((index == i) ? 1.0 : 0.0);
}
return check;
}
/** Compute acceleration derivatives with respect to state parameters.
* <p>
* From a theoretical point of view, this method computes the same values
* as {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])} in the
* specific case of {@link DerivativeStructure} with respect to state, so
* it is less general. However, it is *much* faster in this important case.
* <p>
* <p>
* The derivatives should be computed with respect to position. The input
* parameters already take into account the free parameters (6 or 7 depending
* on derivation with respect to mass being considered or not) and order
* (always 1). Free parameters at indices 0, 1 and 2 correspond to derivatives
* with respect to position. Free parameters at indices 3, 4 and 5 correspond
* to derivatives with respect to velocity (these derivatives will remain zero
* as acceleration due to gravity does not depend on velocity). Free parameter
* at index 6 (if present) corresponds to to derivatives with respect to mass
* (this derivative will remain zero as acceleration due to gravity does not
* depend on mass).
* </p>
* @param date current date
* @param frame inertial reference frame for state (both orbit and attitude)
* @param position position of spacecraft in inertial frame
* @param mu central attraction coefficient to use
* @return acceleration with all derivatives specified by the input parameters
* own derivatives
* @since 6.0
*/
private FieldVector3D<DerivativeStructure> accelerationWrtState(final AbsoluteDate date, final Frame frame,
final FieldVector3D<DerivativeStructure> position,
final DerivativeStructure mu) {
// free parameters
final int freeParameters = mu.getFreeParameters();
// get the position in body frame
final StaticTransform fromBodyFrame = bodyFrame.getStaticTransformTo(frame, date);
final StaticTransform toBodyFrame = fromBodyFrame.getInverse();
final Vector3D positionBody = toBodyFrame.transformPosition(position.toVector3D());
// compute gradient and Hessian
final GradientHessian gh = gradientHessian(date, positionBody, mu.getReal());
// gradient of the non-central part of the gravity field
final double[] gInertial = fromBodyFrame.transformVector(new Vector3D(gh.getGradient())).toArray();
// Hessian of the non-central part of the gravity field
final RealMatrix hBody = new Array2DRowRealMatrix(gh.getHessian(), false);
final RealMatrix rot = new Array2DRowRealMatrix(toBodyFrame.getRotation().getMatrix());
final RealMatrix hInertial = rot.transpose().multiply(hBody).multiply(rot);
// distribute all partial derivatives in a compact acceleration vector
final double[] derivatives = new double[freeParameters + 1];
final DerivativeStructure[] accDer = new DerivativeStructure[3];
for (int i = 0; i < 3; ++i) {
// first element is value of acceleration (i.e. gradient of field)
derivatives[0] = gInertial[i];
// Jacobian of acceleration (i.e. Hessian of field)
derivatives[1] = hInertial.getEntry(i, 0);
derivatives[2] = hInertial.getEntry(i, 1);
derivatives[3] = hInertial.getEntry(i, 2);
// next element is derivative with respect to parameter mu
if (derivatives.length > 4 && isVariable(mu, 3)) {
derivatives[4] = gInertial[i] / mu.getReal();
}
accDer[i] = position.getX().getFactory().build(derivatives);
}
return new FieldVector3D<>(accDer);
}
/** Compute acceleration derivatives with respect to state parameters.
* <p>
* From a theoretical point of view, this method computes the same values
* as {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])} in the
* specific case of {@link DerivativeStructure} with respect to state, so
* it is less general. However, it is *much* faster in this important case.
* <p>
* <p>
* The derivatives should be computed with respect to position. The input
* parameters already take into account the free parameters (6 or 7 depending
* on derivation with respect to mass being considered or not) and order
* (always 1). Free parameters at indices 0, 1 and 2 correspond to derivatives
* with respect to position. Free parameters at indices 3, 4 and 5 correspond
* to derivatives with respect to velocity (these derivatives will remain zero
* as acceleration due to gravity does not depend on velocity). Free parameter
* at index 6 (if present) corresponds to to derivatives with respect to mass
* (this derivative will remain zero as acceleration due to gravity does not
* depend on mass).
* </p>
* @param date current date
* @param frame inertial reference frame for state (both orbit and attitude)
* @param position position of spacecraft in inertial frame
* @param mu central attraction coefficient to use
* @return acceleration with all derivatives specified by the input parameters
* own derivatives
* @since 10.2
*/
private FieldVector3D<Gradient> accelerationWrtState(final AbsoluteDate date, final Frame frame,
final FieldVector3D<Gradient> position,
final Gradient mu) {
// free parameters
final int freeParameters = mu.getFreeParameters();
// get the position in body frame
final StaticTransform fromBodyFrame = bodyFrame.getStaticTransformTo(frame, date);
final StaticTransform toBodyFrame = fromBodyFrame.getInverse();
final Vector3D positionBody = toBodyFrame.transformPosition(position.toVector3D());
// compute gradient and Hessian
final GradientHessian gh = gradientHessian(date, positionBody, mu.getReal());
// gradient of the non-central part of the gravity field
final double[] gInertial = fromBodyFrame.transformVector(new Vector3D(gh.getGradient())).toArray();
// Hessian of the non-central part of the gravity field
final RealMatrix hBody = new Array2DRowRealMatrix(gh.getHessian(), false);
final RealMatrix rot = new Array2DRowRealMatrix(toBodyFrame.getRotation().getMatrix());
final RealMatrix hInertial = rot.transpose().multiply(hBody).multiply(rot);
// distribute all partial derivatives in a compact acceleration vector
final double[] derivatives = new double[freeParameters];
final Gradient[] accDer = new Gradient[3];
for (int i = 0; i < 3; ++i) {
// Jacobian of acceleration (i.e. Hessian of field)
derivatives[0] = hInertial.getEntry(i, 0);
derivatives[1] = hInertial.getEntry(i, 1);
derivatives[2] = hInertial.getEntry(i, 2);
// next element is derivative with respect to parameter mu
if (derivatives.length > 3 && isVariable(mu, 3)) {
derivatives[3] = gInertial[i] / mu.getReal();
}
accDer[i] = new Gradient(gInertial[i], derivatives);
}
return new FieldVector3D<>(accDer);
}
/** {@inheritDoc} */
public List<ParameterDriver> getParametersDrivers() {
return Collections.singletonList(gmParameterDriver);
}
}