AngularTroposphericDelayModifier.java
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements.modifiers;
import java.util.List;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.MathUtils;
import org.orekit.estimation.measurements.AngularAzEl;
import org.orekit.estimation.measurements.EstimatedMeasurementBase;
import org.orekit.estimation.measurements.EstimationModifier;
import org.orekit.estimation.measurements.GroundStation;
import org.orekit.frames.Frame;
import org.orekit.models.earth.troposphere.DiscreteTroposphericModel;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.Constants;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.TrackingCoordinates;
/** Class modifying theoretical angular measurement with tropospheric delay.
* The effect of tropospheric correction on the angular is computed
* through the computation of the tropospheric delay.The spacecraft state
* is shifted by the computed delay time and elevation and azimuth are computed
* again with the new spacecraft state.
*
* In general, for GNSS, VLBI, ... there is hardly any frequency dependence in the delay.
* For SLR techniques however, the frequency dependence is sensitive.
*
* @author Thierry Ceolin
* @since 8.0
*/
public class AngularTroposphericDelayModifier implements EstimationModifier<AngularAzEl> {
/** Tropospheric delay model. */
private final DiscreteTroposphericModel tropoModel;
/** Constructor.
*
* @param model Tropospheric delay model appropriate for the current angular measurement method.
*/
public AngularTroposphericDelayModifier(final DiscreteTroposphericModel model) {
tropoModel = model;
}
/** Compute the measurement error due to Troposphere.
* @param station station
* @param state spacecraft state
* @return the measurement error due to Troposphere
*/
private double angularErrorTroposphericModel(final GroundStation station,
final SpacecraftState state) {
//
final Vector3D position = state.getPosition();
// elevation
final double elevation =
station.getBaseFrame().getTrackingCoordinates(position, state.getFrame(), state.getDate()).
getElevation();
// only consider measures above the horizon
if (elevation > 0.0) {
// delay in meters
final double delay = tropoModel.pathDelay(elevation, station.getBaseFrame().getPoint(), tropoModel.getParameters(state.getDate()), state.getDate());
// one-way measurement.
return delay;
}
return 0;
}
/** {@inheritDoc} */
@Override
public List<ParameterDriver> getParametersDrivers() {
return tropoModel.getParametersDrivers();
}
@Override
public void modifyWithoutDerivatives(final EstimatedMeasurementBase<AngularAzEl> estimated) {
final AngularAzEl measure = estimated.getObservedMeasurement();
final GroundStation station = measure.getStation();
final SpacecraftState state = estimated.getStates()[0];
final double delay = angularErrorTroposphericModel(station, state);
// Delay is taken into account to shift the spacecraft position
final double dt = delay / Constants.SPEED_OF_LIGHT;
// Position of the spacecraft shifted of dt
final SpacecraftState transitState = state.shiftedBy(-dt);
// Update measurement value taking into account the ionospheric delay.
final AbsoluteDate date = transitState.getDate();
final Vector3D position = transitState.getPosition();
final Frame inertial = transitState.getFrame();
// Elevation and azimuth in radians
final TrackingCoordinates tc = station.getBaseFrame().getTrackingCoordinates(position, inertial, date);
final double twoPiWrap = MathUtils.normalizeAngle(tc.getAzimuth(), measure.getObservedValue()[0]) - tc.getAzimuth();
final double azimuth = tc.getAzimuth() + twoPiWrap;
// Update estimated value taking into account the tropospheric delay.
// Azimuth - elevation values
estimated.setEstimatedValue(azimuth, tc.getElevation());
}
}