ZeisModel.java
- /* Copyright 2022 Bryan Cazabonne
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * Bryan Cazabonne licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.forces;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.util.MathArrays;
- import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
- import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
- /**
- * Zeis model for J2-squared second-order terms.
- *
- * @see "ZEIS, Eric and CEFOLA, P. Computerized algebraic utilities for the
- * construction of nonsingular satellite theories. Journal of Guidance and
- * Control, 1980, vol. 3, no 1, p. 48-54."
- *
- * @see "SAN-JUAN, Juan F., LĂ“PEZ, Rosario, et CEFOLA, Paul J. A Second-Order
- * Closed-Form $$ J_2 $$ Model for the Draper Semi-Analytical Satellite
- * Theory. The Journal of the Astronautical Sciences, 2022, p. 1-27."
- *
- * @author Bryan Cazabonne
- * @since 12.0
- */
- public class ZeisModel implements J2SquaredModel {
- /**
- * Retrograde factor I.
- * <p>
- * DSST model needs equinoctial orbit as internal representation. Classical
- * equinoctial elements have discontinuities when inclination is close to zero.
- * In this representation, I = +1. <br>
- * To avoid this discontinuity, another representation exists and equinoctial
- * elements can be expressed in a different way, called "retrograde" orbit. This
- * implies I = -1. <br>
- * As Orekit doesn't implement the retrograde orbit, I is always set to +1. But
- * for the sake of consistency with the theory, the retrograde factor has been
- * kept in the formulas.
- * </p>
- */
- private static final int I = 1;
- /** Constructor. */
- public ZeisModel() {
- // Nothing to do...
- }
- /** {@inheritDoc}. */
- @Override
- public double[] computeMeanEquinoctialSecondOrderTerms(final DSSTJ2SquaredClosedFormContext context) {
- // Auxiliary elements
- final AuxiliaryElements auxiliaryElements = context.getAuxiliaryElements();
- // Zeis constant
- final double c2z = computeC2Z(context);
- // Useful terms
- final double s2mf = 19.0 * context.getS2() - 15.0;
- final double s2pIcmo = context.getS2() + I * context.getC() - 1.0;
- final double s4mts2 = 19.0 * context.getS2() * context.getS2() - 30.0 * context.getS2() + 12.0;
- // Second-order terms (Ref [2] Eq. 37)
- final double deltaA = 0.0;
- final double deltaK = -c2z * auxiliaryElements.getH() * s2mf * s2pIcmo;
- final double deltaH = c2z * auxiliaryElements.getK() * s2mf * s2pIcmo;
- final double deltaQ = -c2z * context.getC() * auxiliaryElements.getP() * s2mf;
- final double deltaP = c2z * context.getC() * auxiliaryElements.getQ() * s2mf;
- final double deltaM = 0.5 * c2z * (2.0 * s2mf * s2pIcmo + 5.0 * s4mts2 * context.getEta());
- // Return
- return new double[] { deltaA, deltaK, deltaH, deltaQ, deltaP, deltaM };
- }
- /** {@inheritDoc}. */
- @Override
- public <T extends CalculusFieldElement<T>> T[] computeMeanEquinoctialSecondOrderTerms(final FieldDSSTJ2SquaredClosedFormContext<T> context) {
- // Auxiliary elements
- final FieldAuxiliaryElements<T> auxiliaryElements = context.getFieldAuxiliaryElements();
- // Field
- final Field<T> field = auxiliaryElements.getDate().getField();
- // Zeis constant
- final T c2z = computeC2Z(context);
- // Useful terms
- final T s2mf = context.getS2().multiply(19.0).subtract(15.0);
- final T s2pIcmo = context.getS2().add(context.getC().multiply(I)).subtract(1.0);
- final T s4mts2 = context.getS2().multiply(context.getS2()).multiply(19.0).subtract(context.getS2().multiply(30.0)).add(12.0);
- // Second-order terms (Ref [2] Eq. 37)
- final T deltaA = field.getZero();
- final T deltaK = c2z.multiply(auxiliaryElements.getH()).multiply(s2mf).multiply(s2pIcmo).negate();
- final T deltaH = c2z.multiply(auxiliaryElements.getK()).multiply(s2mf).multiply(s2pIcmo);
- final T deltaQ = c2z.multiply(context.getC()).multiply(auxiliaryElements.getP()).multiply(s2mf).negate();
- final T deltaP = c2z.multiply(context.getC()).multiply(auxiliaryElements.getQ()).multiply(s2mf);
- final T deltaM = c2z.multiply(0.5).multiply(s2mf.multiply(s2pIcmo).multiply(2.0).add(s4mts2.multiply(context.getEta()).multiply(5.0)));
- // Return
- final T[] terms = MathArrays.buildArray(field, 6);
- terms[0] = deltaA;
- terms[1] = deltaK;
- terms[2] = deltaH;
- terms[3] = deltaQ;
- terms[4] = deltaP;
- terms[5] = deltaM;
- return terms;
- }
- /**
- * Get the value of the Zeis constant.
- *
- * @param context model context
- * @return the value of the Zeis constant
- */
- public double computeC2Z(final DSSTJ2SquaredClosedFormContext context) {
- final AuxiliaryElements auxiliaryElements = context.getAuxiliaryElements();
- return 0.75 * context.getAlpha4() * auxiliaryElements.getMeanMotion() / (context.getA4() * context.getEta());
- }
- /**
- * Get the value of the Zeis constant.
- *
- * @param context model context
- * @param <T> type of the elements
- * @return the value of the Zeis constant
- */
- public <T extends CalculusFieldElement<T>> T computeC2Z(final FieldDSSTJ2SquaredClosedFormContext<T> context) {
- final FieldAuxiliaryElements<T> auxiliaryElements = context.getFieldAuxiliaryElements();
- return auxiliaryElements.getMeanMotion().multiply(context.getAlpha4()).multiply(0.75).divide(context.getA4().multiply(context.getEta()));
- }
- }