FieldDSSTTesseralContext.java
- /* Copyright 2002-2023 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.forces;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.util.FastMath;
- import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
- import org.orekit.frames.FieldStaticTransform;
- import org.orekit.frames.Frame;
- import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
- import org.orekit.time.AbsoluteDate;
- /**
- * This class is a container for the common "field" parameters used in {@link DSSTTesseral}.
- * <p>
- * It performs parameters initialization at each integration step for the Tesseral contribution
- * to the central body gravitational perturbation.
- * </p>
- * @author Bryan Cazabonne
- * @since 10.0
- * @param <T> type of the field elements
- */
- public class FieldDSSTTesseralContext<T extends CalculusFieldElement<T>> extends FieldForceModelContext<T> {
- /** Retrograde factor I.
- * <p>
- * DSST model needs equinoctial orbit as internal representation.
- * Classical equinoctial elements have discontinuities when inclination
- * is close to zero. In this representation, I = +1. <br>
- * To avoid this discontinuity, another representation exists and equinoctial
- * elements can be expressed in a different way, called "retrograde" orbit.
- * This implies I = -1. <br>
- * As Orekit doesn't implement the retrograde orbit, I is always set to +1.
- * But for the sake of consistency with the theory, the retrograde factor
- * has been kept in the formulas.
- * </p>
- */
- private static final int I = 1;
- /** A = sqrt(μ * a). */
- private T A;
- // Common factors for potential computation
- /** Χ = 1 / sqrt(1 - e²) = 1 / B. */
- private T chi;
- /** Χ². */
- private T chi2;
- /** Central body rotation angle θ. */
- private T theta;
- // Common factors from equinoctial coefficients
- /** 2 * a / A .*/
- private T ax2oA;
- /** 1 / (A * B) .*/
- private T ooAB;
- /** B / A .*/
- private T BoA;
- /** B / (A * (1 + B)) .*/
- private T BoABpo;
- /** C / (2 * A * B) .*/
- private T Co2AB;
- /** μ / a .*/
- private T moa;
- /** R / a .*/
- private T roa;
- /** ecc². */
- private T e2;
- /** Keplerian mean motion. */
- private T n;
- /** Keplerian period. */
- private T period;
- /** Ratio of satellite period to central body rotation period. */
- private T ratio;
- /**
- * Simple constructor.
- *
- * @param auxiliaryElements auxiliary elements related to the current orbit
- * @param centralBodyFrame rotating body frame
- * @param provider provider for spherical harmonics
- * @param maxFrequencyShortPeriodics maximum value for j
- * @param bodyPeriod central body rotation period (seconds)
- * @param parameters values of the force model parameters (only 1 values
- * for each parameters corresponding to state date) obtained by calling
- * the extract parameter method {@link #extractParameters(double[], AbsoluteDate)}
- * to selected the right value for state date or by getting the parameters for a specific date
- */
- FieldDSSTTesseralContext(final FieldAuxiliaryElements<T> auxiliaryElements,
- final Frame centralBodyFrame,
- final UnnormalizedSphericalHarmonicsProvider provider,
- final int maxFrequencyShortPeriodics,
- final double bodyPeriod,
- final T[] parameters) {
- super(auxiliaryElements);
- final Field<T> field = auxiliaryElements.getDate().getField();
- final T zero = field.getZero();
- final T mu = parameters[0];
- // Keplerian mean motion
- final T absA = FastMath.abs(auxiliaryElements.getSma());
- n = FastMath.sqrt(mu.divide(absA)).divide(absA);
- // Keplerian period
- final T a = auxiliaryElements.getSma();
- period = (a.getReal() < 0) ? zero.add(Double.POSITIVE_INFINITY) : a.multiply(a.getPi().multiply(2.0)).multiply(a.divide(mu).sqrt());
- A = FastMath.sqrt(mu.multiply(auxiliaryElements.getSma()));
- // Eccentricity square
- e2 = auxiliaryElements.getEcc().multiply(auxiliaryElements.getEcc());
- // Central body rotation angle from equation 2.7.1-(3)(4).
- final FieldStaticTransform<T> t = centralBodyFrame.getStaticTransformTo(auxiliaryElements.getFrame(), auxiliaryElements.getDate());
- final FieldVector3D<T> xB = t.transformVector(FieldVector3D.getPlusI(field));
- final FieldVector3D<T> yB = t.transformVector(FieldVector3D.getPlusJ(field));
- theta = FastMath.atan2(auxiliaryElements.getVectorF().dotProduct(yB).negate().add((auxiliaryElements.getVectorG().dotProduct(xB)).multiply(I)),
- auxiliaryElements.getVectorF().dotProduct(xB).add(auxiliaryElements.getVectorG().dotProduct(yB).multiply(I)));
- // Common factors from equinoctial coefficients
- // 2 * a / A
- ax2oA = auxiliaryElements.getSma().divide(A).multiply(2.);
- // B / A
- BoA = auxiliaryElements.getB().divide(A);
- // 1 / AB
- ooAB = A.multiply(auxiliaryElements.getB()).reciprocal();
- // C / 2AB
- Co2AB = auxiliaryElements.getC().multiply(ooAB).divide(2.);
- // B / (A * (1 + B))
- BoABpo = BoA.divide(auxiliaryElements.getB().add(1.));
- // &mu / a
- moa = mu.divide(auxiliaryElements.getSma());
- // R / a
- roa = auxiliaryElements.getSma().divide(provider.getAe()).reciprocal();
- // Χ = 1 / B
- chi = auxiliaryElements.getB().reciprocal();
- chi2 = chi.multiply(chi);
- // Ratio of satellite to central body periods to define resonant terms
- ratio = period.divide(bodyPeriod);
- }
- /** Get ecc².
- * @return e2
- */
- public T getE2() {
- return e2;
- }
- /** Get Central body rotation angle θ.
- * @return theta
- */
- public T getTheta() {
- return theta;
- }
- /** Get ax2oA = 2 * a / A .
- * @return ax2oA
- */
- public T getAx2oA() {
- return ax2oA;
- }
- /** Get Χ = 1 / sqrt(1 - e²) = 1 / B.
- * @return chi
- */
- public T getChi() {
- return chi;
- }
- /** Get Χ².
- * @return chi2
- */
- public T getChi2() {
- return chi2;
- }
- /** Get B / A.
- * @return BoA
- */
- public T getBoA() {
- return BoA;
- }
- /** Get ooAB = 1 / (A * B).
- * @return ooAB
- */
- public T getOoAB() {
- return ooAB;
- }
- /** Get Co2AB = C / 2AB.
- * @return Co2AB
- */
- public T getCo2AB() {
- return Co2AB;
- }
- /** Get BoABpo = B / A(1 + B).
- * @return BoABpo
- */
- public T getBoABpo() {
- return BoABpo;
- }
- /** Get μ / a .
- * @return moa
- */
- public T getMoa() {
- return moa;
- }
- /** Get roa = R / a.
- * @return roa
- */
- public T getRoa() {
- return roa;
- }
- /** Get the Keplerian period.
- * <p>The Keplerian period is computed directly from semi major axis
- * and central acceleration constant.</p>
- * @return Keplerian period in seconds, or positive infinity for hyperbolic orbits
- */
- public T getOrbitPeriod() {
- return period;
- }
- /** Get the Keplerian mean motion.
- * <p>The Keplerian mean motion is computed directly from semi major axis
- * and central acceleration constant.</p>
- * @return Keplerian mean motion in radians per second
- */
- public T getMeanMotion() {
- return n;
- }
- /** Get the ratio of satellite period to central body rotation period.
- * @return ratio
- */
- public T getRatio() {
- return ratio;
- }
- }