FieldSDP4.java
/* Copyright 2002-2023 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.analytical.tle;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.FieldSinCos;
import org.hipparchus.util.MathUtils;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.frames.Frame;
import org.orekit.time.DateTimeComponents;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.Constants;
/** This class contains methods to compute propagated coordinates with the SDP4 model.
* <p>
* The user should not bother in this class since it is handled internally by the
* {@link TLEPropagator}.
* </p>
* <p>This implementation is largely inspired from the paper and source code <a
* href="https://www.celestrak.com/publications/AIAA/2006-6753/">Revisiting Spacetrack
* Report #3</a> and is fully compliant with its results and tests cases.</p>
* @author Felix R. Hoots, Ronald L. Roehrich, December 1980 (original fortran)
* @author David A. Vallado, Paul Crawford, Richard Hujsak, T.S. Kelso (C++ translation and improvements)
* @author Fabien Maussion (java translation)
* @author Thomas Paulet (field translation)
* @since 11.0
* @param <T> type of the field elements
*/
abstract class FieldSDP4<T extends CalculusFieldElement<T>> extends FieldTLEPropagator<T> {
// CHECKSTYLE: stop VisibilityModifier check
/** New perigee argument. */
protected T omgadf;
/** New mean motion. */
protected T xn;
/** Parameter for xl computation. */
protected T xll;
/** New eccentricity. */
protected T em;
/** New inclination. */
protected T xinc;
// CHECKSTYLE: resume VisibilityModifier check
/** Constructor for a unique initial TLE.
* @param initialTLE the TLE to propagate.
* @param attitudeProvider provider for attitude computation
* @param mass spacecraft mass (kg)
* @param teme the TEME frame to use for propagation.
* @param parameters SGP4 and SDP4 model parameters
*/
protected FieldSDP4(final FieldTLE<T> initialTLE,
final AttitudeProvider attitudeProvider,
final T mass,
final Frame teme,
final T[] parameters) {
super(initialTLE, attitudeProvider, mass, teme, parameters);
}
/** Initialization proper to each propagator (SGP or SDP).
* @param parameters model parameters
*/
protected void sxpInitialize(final T[] parameters) {
luniSolarTermsComputation();
} // End of initialization
/** Propagation proper to each propagator (SGP or SDP).
* @param tSince the offset from initial epoch (minutes)
* @param parameters model parameters
*/
protected void sxpPropagate(final T tSince, final T[] parameters) {
// Update for secular gravity and atmospheric drag
final T bStar = parameters[0];
omgadf = tle.getPerigeeArgument().add(omgdot.multiply(tSince));
final T xnoddf = tle.getRaan().add(xnodot.multiply(tSince));
final T tSinceSq = tSince.multiply(tSince);
xnode = xnoddf.add(xnodcf.multiply(tSinceSq));
xn = xn0dp;
// Update for deep-space secular effects
xll = tle.getMeanAnomaly().add(xmdot.multiply(tSince));
deepSecularEffects(tSince);
final T tempa = c1.multiply(tSince).negate().add(1.0);
a = xn.reciprocal().multiply(TLEConstants.XKE).pow(TLEConstants.TWO_THIRD).multiply(tempa).multiply(tempa);
em = em.subtract(bStar.multiply(c4).multiply(tSince));
// Update for deep-space periodic effects
xll = xll.add(xn0dp.multiply(t2cof).multiply(tSinceSq));
deepPeriodicEffects(tSince);
xl = xll.add(omgadf).add(xnode);
// Dundee change: Reset cosio, sinio for new xinc:
final FieldSinCos<T> scI0 = FastMath.sinCos(xinc);
cosi0 = scI0.cos();
sini0 = scI0.sin();
e = em;
i = xinc;
omega = omgadf;
// end of calculus, go for PV computation
}
/** Computes SPACETRACK#3 compliant earth rotation angle.
* @param date the current date
* @return the ERA (rad)
*/
protected double thetaG(final FieldAbsoluteDate<T> date) {
// Reference: The 1992 Astronomical Almanac, page B6.
final double omega_E = 1.00273790934;
final double jd = date
.getComponents(utc)
.offsetFrom(DateTimeComponents.JULIAN_EPOCH) /
Constants.JULIAN_DAY;
// Earth rotations per sidereal day (non-constant)
final double UT = (jd + 0.5) % 1;
final double seconds_per_day = Constants.JULIAN_DAY;
final double jd_2000 = 2451545.0; /* 1.5 Jan 2000 = JD 2451545. */
final double t_cen = (jd - UT - jd_2000) / 36525.;
double GMST = 24110.54841 +
t_cen * (8640184.812866 + t_cen * (0.093104 - t_cen * 6.2E-6));
GMST = (GMST + seconds_per_day * omega_E * UT) % seconds_per_day;
if (GMST < 0.) {
GMST += seconds_per_day;
}
return MathUtils.TWO_PI * GMST / seconds_per_day;
}
/** Computes luni - solar terms from initial coordinates and epoch.
*/
protected abstract void luniSolarTermsComputation();
/** Computes secular terms from current coordinates and epoch.
* @param t offset from initial epoch (min)
*/
protected abstract void deepSecularEffects(T t);
/** Computes periodic terms from current coordinates and epoch.
* @param t offset from initial epoch (min)
*/
protected abstract void deepPeriodicEffects(T t);
}