TurnAroundRangeTroposphericDelayModifier.java
/* Copyright 2002-2023 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements.modifiers;
import java.util.Arrays;
import java.util.List;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.analysis.differentiation.Gradient;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.attitudes.FrameAlignedProvider;
import org.orekit.estimation.measurements.EstimatedMeasurement;
import org.orekit.estimation.measurements.EstimatedMeasurementBase;
import org.orekit.estimation.measurements.EstimationModifier;
import org.orekit.estimation.measurements.GroundStation;
import org.orekit.estimation.measurements.TurnAroundRange;
import org.orekit.models.earth.troposphere.DiscreteTroposphericModel;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.Differentiation;
import org.orekit.utils.ParameterDriver;
import org.orekit.utils.ParameterFunction;
import org.orekit.utils.TimeSpanMap.Span;
/** Class modifying theoretical turn-around TurnAroundRange measurement with tropospheric delay.
* The effect of tropospheric correction on the TurnAroundRange is directly computed
* through the computation of the tropospheric delay.
*
* In general, for GNSS, VLBI, ... there is hardly any frequency dependence in the delay.
* For SLR techniques however, the frequency dependence is sensitive.
*
* @author Maxime Journot
* @since 9.0
*/
public class TurnAroundRangeTroposphericDelayModifier implements EstimationModifier<TurnAroundRange> {
/** Tropospheric delay model. */
private final DiscreteTroposphericModel tropoModel;
/** Constructor.
*
* @param model Tropospheric delay model appropriate for the current TurnAroundRange measurement method.
*/
public TurnAroundRangeTroposphericDelayModifier(final DiscreteTroposphericModel model) {
tropoModel = model;
}
/** Compute the measurement error due to Troposphere.
* @param station station
* @param state spacecraft state
* @return the measurement error due to Troposphere
*/
private double rangeErrorTroposphericModel(final GroundStation station, final SpacecraftState state) {
//
final Vector3D position = state.getPosition();
// elevation
final double elevation =
station.getBaseFrame().getTrackingCoordinates(position, state.getFrame(), state.getDate()).
getElevation();
// only consider measures above the horizon
if (elevation > 0) {
// Delay in meters
final double delay = tropoModel.pathDelay(elevation, station.getBaseFrame().getPoint(), tropoModel.getParameters(state.getDate()), state.getDate());
return delay;
}
return 0;
}
/** Compute the measurement error due to Troposphere.
* @param <T> type of the element
* @param station station
* @param state spacecraft state
* @param parameters tropospheric model parameters
* @return the measurement error due to Troposphere
*/
private <T extends CalculusFieldElement<T>> T rangeErrorTroposphericModel(final GroundStation station,
final FieldSpacecraftState<T> state,
final T[] parameters) {
// Field
final Field<T> field = state.getDate().getField();
final T zero = field.getZero();
//
final FieldVector3D<T> position = state.getPosition();
final T dsElevation =
station.getBaseFrame().getTrackingCoordinates(position, state.getFrame(), state.getDate()).
getElevation();
// only consider measures above the horizon
if (dsElevation.getReal() > 0) {
// Delay in meters
final T delay = tropoModel.pathDelay(dsElevation, station.getBaseFrame().getPoint(field), parameters, state.getDate());
return delay;
}
return zero;
}
/** Compute the Jacobian of the delay term wrt state using
* automatic differentiation.
*
* @param derivatives tropospheric delay derivatives
*
* @return Jacobian of the delay wrt state
*/
private double[][] rangeErrorJacobianState(final double[] derivatives) {
final double[][] finiteDifferencesJacobian = new double[1][6];
System.arraycopy(derivatives, 0, finiteDifferencesJacobian[0], 0, 6);
return finiteDifferencesJacobian;
}
/** Compute the derivative of the delay term wrt parameters.
*
* @param station ground station
* @param driver driver for the station offset parameter
* @param state spacecraft state
* @return derivative of the delay wrt station offset parameter
*/
private double rangeErrorParameterDerivative(final GroundStation station,
final ParameterDriver driver,
final SpacecraftState state) {
final ParameterFunction rangeError = new ParameterFunction() {
/** {@inheritDoc} */
@Override
public double value(final ParameterDriver parameterDriver, final AbsoluteDate date) {
return rangeErrorTroposphericModel(station, state);
}
};
final ParameterFunction rangeErrorDerivative = Differentiation.differentiate(rangeError, 3, 10.0 * driver.getScale());
return rangeErrorDerivative.value(driver, state.getDate());
}
/** Compute the derivative of the delay term wrt parameters using
* automatic differentiation.
*
* @param derivatives tropospheric delay derivatives
* @param freeStateParameters dimension of the state.
* @return derivative of the delay wrt tropospheric model parameters
*/
private double[] rangeErrorParameterDerivative(final double[] derivatives, final int freeStateParameters) {
// 0 ... freeStateParameters - 1 -> derivatives of the delay wrt state
// freeStateParameters ... n -> derivatives of the delay wrt tropospheric parameters
final int dim = derivatives.length - freeStateParameters;
final double[] rangeError = new double[dim];
for (int i = 0; i < dim; i++) {
rangeError[i] = derivatives[freeStateParameters + i];
}
return rangeError;
}
/** {@inheritDoc} */
@Override
public List<ParameterDriver> getParametersDrivers() {
return tropoModel.getParametersDrivers();
}
/** {@inheritDoc} */
@Override
public void modifyWithoutDerivatives(final EstimatedMeasurementBase<TurnAroundRange> estimated) {
final TurnAroundRange measurement = estimated.getObservedMeasurement();
final GroundStation primaryStation = measurement.getPrimaryStation();
final GroundStation secondaryStation = measurement.getSecondaryStation();
final SpacecraftState state = estimated.getStates()[0];
// Update estimated value taking into account the tropospheric delay.
// The tropospheric delay is directly added to the TurnAroundRange.
final double[] newValue = estimated.getEstimatedValue();
final double primaryDelay = rangeErrorTroposphericModel(primaryStation, state);
final double secondaryDelay = rangeErrorTroposphericModel(secondaryStation, state);
newValue[0] = newValue[0] + primaryDelay + secondaryDelay;
estimated.setEstimatedValue(newValue);
}
/** {@inheritDoc} */
@Override
public void modify(final EstimatedMeasurement<TurnAroundRange> estimated) {
final TurnAroundRange measurement = estimated.getObservedMeasurement();
final GroundStation primaryStation = measurement.getPrimaryStation();
final GroundStation secondaryStation = measurement.getSecondaryStation();
final SpacecraftState state = estimated.getStates()[0];
final double[] oldValue = estimated.getEstimatedValue();
// Update estimated derivatives with Jacobian of the measure wrt state
final ModifierGradientConverter converter =
new ModifierGradientConverter(state, 6, new FrameAlignedProvider(state.getFrame()));
final FieldSpacecraftState<Gradient> gState = converter.getState(tropoModel);
final Gradient[] gParameters = converter.getParametersAtStateDate(gState, tropoModel);
final Gradient primaryGDelay = rangeErrorTroposphericModel(primaryStation, gState, gParameters);
final Gradient secondaryGDelay = rangeErrorTroposphericModel(secondaryStation, gState, gParameters);
final double[] primaryDerivatives = primaryGDelay.getGradient();
final double[] secondaryDerivatives = secondaryGDelay.getGradient();
final double[][] primaryDjac = rangeErrorJacobianState(primaryDerivatives);
final double[][] secondaryDjac = rangeErrorJacobianState(secondaryDerivatives);
final double[][] stateDerivatives = estimated.getStateDerivatives(0);
for (int irow = 0; irow < stateDerivatives.length; ++irow) {
for (int jcol = 0; jcol < stateDerivatives[0].length; ++jcol) {
stateDerivatives[irow][jcol] += primaryDjac[irow][jcol] + secondaryDjac[irow][jcol];
}
}
estimated.setStateDerivatives(0, stateDerivatives);
int indexPrimary = 0;
for (final ParameterDriver driver : getParametersDrivers()) {
if (driver.isSelected()) {
// update estimated derivatives with derivative of the modification wrt tropospheric parameters
for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
final double[] derivatives = rangeErrorParameterDerivative(primaryDerivatives, converter.getFreeStateParameters());
parameterDerivative += derivatives[indexPrimary];
estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
indexPrimary += 1;
}
}
}
int indexSecondary = 0;
for (final ParameterDriver driver : getParametersDrivers()) {
if (driver.isSelected()) {
// update estimated derivatives with derivative of the modification wrt tropospheric parameters
for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
final double[] derivatives = rangeErrorParameterDerivative(secondaryDerivatives, converter.getFreeStateParameters());
parameterDerivative += derivatives[indexSecondary];
estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
indexSecondary += 1;
}
}
}
// Update derivatives with respect to primary station position
for (final ParameterDriver driver : Arrays.asList(primaryStation.getClockOffsetDriver(),
primaryStation.getEastOffsetDriver(),
primaryStation.getNorthOffsetDriver(),
primaryStation.getZenithOffsetDriver())) {
if (driver.isSelected()) {
for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
parameterDerivative += rangeErrorParameterDerivative(primaryStation, driver, state);
estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
}
}
}
// Update derivatives with respect to secondary station position
for (final ParameterDriver driver : Arrays.asList(secondaryStation.getEastOffsetDriver(),
secondaryStation.getNorthOffsetDriver(),
secondaryStation.getZenithOffsetDriver())) {
if (driver.isSelected()) {
for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
parameterDerivative += rangeErrorParameterDerivative(secondaryStation, driver, state);
estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
}
}
}
// Update estimated value taking into account the tropospheric delay.
// The tropospheric delay is directly added to the TurnAroundRange.
final double[] newValue = oldValue.clone();
newValue[0] = newValue[0] + primaryGDelay.getReal() + secondaryGDelay.getReal();
estimated.setEstimatedValue(newValue);
}
}