PolynomialNutation.java
/* Copyright 2002-2023 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.data;
import java.io.Serializable;
import org.hipparchus.CalculusFieldElement;
import org.orekit.utils.Constants;
/**
* Polynomial nutation function.
*
* @author Luc Maisonobe
* @see PoissonSeries
*/
public class PolynomialNutation implements Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20131007L;
/** Coefficients of the polynomial part. */
private double[] coefficients;
/** Build a polynomial from its coefficients.
* @param coefficients polynomial coefficients in increasing degree
*/
public PolynomialNutation(final double... coefficients) {
this.coefficients = coefficients.clone();
}
/** Evaluate the value of the polynomial.
* @param tc date offset in Julian centuries
* @return value of the polynomial
*/
public double value(final double tc) {
double p = 0;
for (int i = coefficients.length - 1; i >= 0; --i) {
p = p * tc + coefficients[i];
}
return p;
}
/** Evaluate the time derivative of the polynomial.
* @param tc date offset in Julian centuries
* @return time derivative of the polynomial
*/
public double derivative(final double tc) {
double p = 0;
for (int i = coefficients.length - 1; i > 0; --i) {
p = p * tc + i * coefficients[i];
}
return p / Constants.JULIAN_CENTURY;
}
/** Evaluate the value of the polynomial.
* @param tc date offset in Julian centuries
* @param <T> type of the filed elements
* @return value of the polynomial
*/
public <T extends CalculusFieldElement<T>> T value(final T tc) {
T p = tc.getField().getZero();
for (int i = coefficients.length - 1; i >= 0; --i) {
p = p.multiply(tc).add(coefficients[i]);
}
return p;
}
/** Evaluate the time derivative of the polynomial.
* @param tc date offset in Julian centuries
* @param <T> type of the filed elements
* @return time derivative of the polynomial
*/
public <T extends CalculusFieldElement<T>> T derivative(final T tc) {
T p = tc.getField().getZero();
for (int i = coefficients.length - 1; i > 0; --i) {
p = p.multiply(tc).add( i * coefficients[i]);
}
return p.divide(Constants.JULIAN_CENTURY);
}
}