OrbitType.java
- /* Copyright 2002-2022 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.orbits;
- import java.util.Arrays;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.frames.Frame;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.FieldPVCoordinates;
- import org.orekit.utils.PVCoordinates;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.ParameterDriversList;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- /** Enumerate for {@link Orbit orbital} parameters types.
- */
- public enum OrbitType {
- /** Type for propagation in {@link CartesianOrbit Cartesian parameters}. */
- CARTESIAN {
- /** {@inheritDoc} */
- @Override
- public CartesianOrbit convertType(final Orbit orbit) {
- return (orbit.getType() == this) ? (CartesianOrbit) orbit : new CartesianOrbit(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public void mapOrbitToArray(final Orbit orbit, final PositionAngle type,
- final double[] stateVector, final double[] stateVectorDot) {
- final PVCoordinates pv = orbit.getPVCoordinates();
- final Vector3D p = pv.getPosition();
- final Vector3D v = pv.getVelocity();
- stateVector[0] = p.getX();
- stateVector[1] = p.getY();
- stateVector[2] = p.getZ();
- stateVector[3] = v.getX();
- stateVector[4] = v.getY();
- stateVector[5] = v.getZ();
- if (stateVectorDot != null) {
- final Vector3D a = pv.getAcceleration();
- stateVectorDot[0] = v.getX();
- stateVectorDot[1] = v.getY();
- stateVectorDot[2] = v.getZ();
- stateVectorDot[3] = a.getX();
- stateVectorDot[4] = a.getY();
- stateVectorDot[5] = a.getZ();
- }
- }
- /** {@inheritDoc} */
- @Override
- public CartesianOrbit mapArrayToOrbit(final double[] stateVector, final double[] stateVectorDot, final PositionAngle type,
- final AbsoluteDate date, final double mu, final Frame frame) {
- final Vector3D p = new Vector3D(stateVector[0], stateVector[1], stateVector[2]);
- final Vector3D v = new Vector3D(stateVector[3], stateVector[4], stateVector[5]);
- final Vector3D a;
- if (stateVectorDot == null) {
- // we don't have data about acceleration
- return new CartesianOrbit(new PVCoordinates(p, v), frame, date, mu);
- } else {
- // we do have an acceleration
- a = new Vector3D(stateVectorDot[3], stateVectorDot[4], stateVectorDot[5]);
- return new CartesianOrbit(new PVCoordinates(p, v, a), frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldCartesianOrbit<T> convertType(final FieldOrbit<T> orbit) {
- return (orbit.getType() == this) ? (FieldCartesianOrbit<T>) orbit : new FieldCartesianOrbit<>(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> void mapOrbitToArray(final FieldOrbit<T> orbit,
- final PositionAngle type,
- final T[] stateVector,
- final T[] stateVectorDot) {
- final TimeStampedFieldPVCoordinates<T> pv = orbit.getPVCoordinates();
- final FieldVector3D<T> p = pv.getPosition();
- final FieldVector3D<T> v = pv.getVelocity();
- stateVector[0] = p.getX();
- stateVector[1] = p.getY();
- stateVector[2] = p.getZ();
- stateVector[3] = v.getX();
- stateVector[4] = v.getY();
- stateVector[5] = v.getZ();
- if (stateVectorDot != null) {
- final FieldVector3D<T> a = pv.getAcceleration();
- stateVectorDot[0] = v.getX();
- stateVectorDot[1] = v.getY();
- stateVectorDot[2] = v.getZ();
- stateVectorDot[3] = a.getX();
- stateVectorDot[4] = a.getY();
- stateVectorDot[5] = a.getZ();
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldCartesianOrbit<T> mapArrayToOrbit(final T[] stateVector,
- final T[] stateVectorDot,
- final PositionAngle type,
- final FieldAbsoluteDate<T> date,
- final T mu, final Frame frame) {
- final FieldVector3D<T> p = new FieldVector3D<>(stateVector[0], stateVector[1], stateVector[2]);
- final FieldVector3D<T> v = new FieldVector3D<>(stateVector[3], stateVector[4], stateVector[5]);
- final FieldVector3D<T> a;
- if (stateVectorDot == null) {
- // we don't have data about acceleration
- return new FieldCartesianOrbit<>(new FieldPVCoordinates<>(p, v), frame, date, mu);
- } else {
- // we do have an acceleration
- a = new FieldVector3D<>(stateVectorDot[3], stateVectorDot[4], stateVectorDot[5]);
- return new FieldCartesianOrbit<>(new FieldPVCoordinates<>(p, v, a), frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public ParameterDriversList getDrivers(final double dP, final Orbit orbit, final PositionAngle type) {
- final ParameterDriversList drivers = new ParameterDriversList();
- final double[] array = new double[6];
- mapOrbitToArray(orbit, type, array, null);
- final double[] scale = scale(dP, orbit);
- drivers.add(new ParameterDriver(POS_X, array[0], scale[0], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(POS_Y, array[1], scale[1], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(POS_Z, array[2], scale[2], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(VEL_X, array[3], scale[3], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(VEL_Y, array[4], scale[4], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(VEL_Z, array[5], scale[5], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- return drivers;
- }
- /** {@inheritDoc} */
- @Override
- public CartesianOrbit normalize(final Orbit orbit, final Orbit reference) {
- // no angular parameters need normalization
- return convertType(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldCartesianOrbit<T> normalize(final FieldOrbit<T> orbit, final FieldOrbit<T> reference) {
- // no angular parameters need normalization
- return convertType(orbit);
- }
- },
- /** Type for propagation in {@link CircularOrbit circular parameters}. */
- CIRCULAR {
- /** {@inheritDoc} */
- @Override
- public CircularOrbit convertType(final Orbit orbit) {
- return (orbit.getType() == this) ? (CircularOrbit) orbit : new CircularOrbit(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public void mapOrbitToArray(final Orbit orbit, final PositionAngle type,
- final double[] stateVector, final double[] stateVectorDot) {
- final CircularOrbit circularOrbit = (CircularOrbit) OrbitType.CIRCULAR.convertType(orbit);
- stateVector[0] = circularOrbit.getA();
- stateVector[1] = circularOrbit.getCircularEx();
- stateVector[2] = circularOrbit.getCircularEy();
- stateVector[3] = circularOrbit.getI();
- stateVector[4] = circularOrbit.getRightAscensionOfAscendingNode();
- stateVector[5] = circularOrbit.getAlpha(type);
- if (stateVectorDot != null) {
- if (orbit.hasDerivatives()) {
- stateVectorDot[0] = circularOrbit.getADot();
- stateVectorDot[1] = circularOrbit.getCircularExDot();
- stateVectorDot[2] = circularOrbit.getCircularEyDot();
- stateVectorDot[3] = circularOrbit.getIDot();
- stateVectorDot[4] = circularOrbit.getRightAscensionOfAscendingNodeDot();
- stateVectorDot[5] = circularOrbit.getAlphaDot(type);
- } else {
- Arrays.fill(stateVectorDot, 0, 6, Double.NaN);
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public CircularOrbit mapArrayToOrbit(final double[] stateVector, final double[] stateVectorDot, final PositionAngle type,
- final AbsoluteDate date, final double mu, final Frame frame) {
- if (stateVectorDot == null) {
- // we don't have orbit derivatives
- return new CircularOrbit(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- type, frame, date, mu);
- } else {
- // we have orbit derivatives
- return new CircularOrbit(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- stateVectorDot[0], stateVectorDot[1], stateVectorDot[2],
- stateVectorDot[3], stateVectorDot[4], stateVectorDot[5],
- type, frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldCircularOrbit<T> convertType(final FieldOrbit<T> orbit) {
- return (orbit.getType() == this) ? (FieldCircularOrbit<T>) orbit : new FieldCircularOrbit<>(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> void mapOrbitToArray(final FieldOrbit<T> orbit,
- final PositionAngle type,
- final T[] stateVector,
- final T[] stateVectorDot) {
- final FieldCircularOrbit<T> circularOrbit = (FieldCircularOrbit<T>) OrbitType.CIRCULAR.convertType(orbit);
- stateVector[0] = circularOrbit.getA();
- stateVector[1] = circularOrbit.getCircularEx();
- stateVector[2] = circularOrbit.getCircularEy();
- stateVector[3] = circularOrbit.getI();
- stateVector[4] = circularOrbit.getRightAscensionOfAscendingNode();
- stateVector[5] = circularOrbit.getAlpha(type);
- if (stateVectorDot != null) {
- if (orbit.hasDerivatives()) {
- stateVectorDot[0] = circularOrbit.getADot();
- stateVectorDot[1] = circularOrbit.getCircularExDot();
- stateVectorDot[2] = circularOrbit.getCircularEyDot();
- stateVectorDot[3] = circularOrbit.getIDot();
- stateVectorDot[4] = circularOrbit.getRightAscensionOfAscendingNodeDot();
- stateVectorDot[5] = circularOrbit.getAlphaDot(type);
- } else {
- Arrays.fill(stateVectorDot, 0, 6, orbit.getDate().getField().getZero().add(Double.NaN));
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldCircularOrbit<T> mapArrayToOrbit(final T[] stateVector,
- final T[] stateVectorDot, final PositionAngle type,
- final FieldAbsoluteDate<T> date,
- final T mu, final Frame frame) {
- if (stateVectorDot == null) {
- // we don't have orbit derivatives
- return new FieldCircularOrbit<>(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- type, frame, date, mu);
- } else {
- // we have orbit derivatives
- return new FieldCircularOrbit<>(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- stateVectorDot[0], stateVectorDot[1], stateVectorDot[2],
- stateVectorDot[3], stateVectorDot[4], stateVectorDot[5],
- type, frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public ParameterDriversList getDrivers(final double dP, final Orbit orbit, final PositionAngle type) {
- final ParameterDriversList drivers = new ParameterDriversList();
- final double[] array = new double[6];
- mapOrbitToArray(orbit, type, array, null);
- final double[] scale = scale(dP, orbit);
- final String name = type == PositionAngle.MEAN ?
- MEAN_LAT_ARG :
- type == PositionAngle.ECCENTRIC ? ECC_LAT_ARG : TRUE_LAT_ARG;
- drivers.add(new ParameterDriver(A, array[0], scale[0], 0.0, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(E_X, array[1], scale[1], -1.0, 1.0));
- drivers.add(new ParameterDriver(E_Y, array[2], scale[2], -1.0, 1.0));
- drivers.add(new ParameterDriver(INC, array[3], scale[3], 0.0, FastMath.PI));
- drivers.add(new ParameterDriver(RAAN, array[4], scale[4], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(name, array[5], scale[5], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- return drivers;
- }
- /** {@inheritDoc} */
- @Override
- public CircularOrbit normalize(final Orbit orbit, final Orbit reference) {
- // convert input to proper type
- final CircularOrbit cO = convertType(orbit);
- final CircularOrbit cR = convertType(reference);
- // perform normalization
- if (cO.hasDerivatives()) {
- return new CircularOrbit(cO.getA(),
- cO.getCircularEx(),
- cO.getCircularEy(),
- cO.getI(),
- MathUtils.normalizeAngle(cO.getRightAscensionOfAscendingNode(), cR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(cO.getAlphaV(), cR.getAlphaV()),
- cO.getADot(),
- cO.getCircularExDot(),
- cO.getCircularEyDot(),
- cO.getIDot(),
- cO.getRightAscensionOfAscendingNodeDot(),
- cO.getAlphaVDot(),
- PositionAngle.TRUE,
- cO.getFrame(),
- cO.getDate(),
- cO.getMu());
- } else {
- return new CircularOrbit(cO.getA(),
- cO.getCircularEx(),
- cO.getCircularEy(),
- cO.getI(),
- MathUtils.normalizeAngle(cO.getRightAscensionOfAscendingNode(), cR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(cO.getAlphaV(), cR.getAlphaV()),
- PositionAngle.TRUE,
- cO.getFrame(),
- cO.getDate(),
- cO.getMu());
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldCircularOrbit<T> normalize(final FieldOrbit<T> orbit, final FieldOrbit<T> reference) {
- // convert input to proper type
- final FieldCircularOrbit<T> cO = convertType(orbit);
- final FieldCircularOrbit<T> cR = convertType(reference);
- // perform normalization
- if (cO.hasDerivatives()) {
- return new FieldCircularOrbit<>(cO.getA(),
- cO.getCircularEx(),
- cO.getCircularEy(),
- cO.getI(),
- MathUtils.normalizeAngle(cO.getRightAscensionOfAscendingNode(), cR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(cO.getAlphaV(), cR.getAlphaV()),
- cO.getADot(),
- cO.getCircularExDot(),
- cO.getCircularEyDot(),
- cO.getIDot(),
- cO.getRightAscensionOfAscendingNodeDot(),
- cO.getAlphaVDot(),
- PositionAngle.TRUE,
- cO.getFrame(),
- cO.getDate(),
- cO.getMu());
- } else {
- return new FieldCircularOrbit<>(cO.getA(),
- cO.getCircularEx(),
- cO.getCircularEy(),
- cO.getI(),
- MathUtils.normalizeAngle(cO.getRightAscensionOfAscendingNode(), cR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(cO.getAlphaV(), cR.getAlphaV()),
- PositionAngle.TRUE,
- cO.getFrame(),
- cO.getDate(),
- cO.getMu());
- }
- }
- },
- /** Type for propagation in {@link EquinoctialOrbit equinoctial parameters}. */
- EQUINOCTIAL {
- /** {@inheritDoc} */
- @Override
- public EquinoctialOrbit convertType(final Orbit orbit) {
- return (orbit.getType() == this) ? (EquinoctialOrbit) orbit : new EquinoctialOrbit(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public void mapOrbitToArray(final Orbit orbit, final PositionAngle type,
- final double[] stateVector, final double[] stateVectorDot) {
- final EquinoctialOrbit equinoctialOrbit =
- (EquinoctialOrbit) OrbitType.EQUINOCTIAL.convertType(orbit);
- stateVector[0] = equinoctialOrbit.getA();
- stateVector[1] = equinoctialOrbit.getEquinoctialEx();
- stateVector[2] = equinoctialOrbit.getEquinoctialEy();
- stateVector[3] = equinoctialOrbit.getHx();
- stateVector[4] = equinoctialOrbit.getHy();
- stateVector[5] = equinoctialOrbit.getL(type);
- if (stateVectorDot != null) {
- if (orbit.hasDerivatives()) {
- stateVectorDot[0] = equinoctialOrbit.getADot();
- stateVectorDot[1] = equinoctialOrbit.getEquinoctialExDot();
- stateVectorDot[2] = equinoctialOrbit.getEquinoctialEyDot();
- stateVectorDot[3] = equinoctialOrbit.getHxDot();
- stateVectorDot[4] = equinoctialOrbit.getHyDot();
- stateVectorDot[5] = equinoctialOrbit.getLDot(type);
- } else {
- Arrays.fill(stateVectorDot, 0, 6, Double.NaN);
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public EquinoctialOrbit mapArrayToOrbit(final double[] stateVector, final double[] stateVectorDot, final PositionAngle type,
- final AbsoluteDate date, final double mu, final Frame frame) {
- if (stateVectorDot == null) {
- // we don't have orbit derivatives
- return new EquinoctialOrbit(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- type, frame, date, mu);
- } else {
- // we have orbit derivatives
- return new EquinoctialOrbit(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- stateVectorDot[0], stateVectorDot[1], stateVectorDot[2],
- stateVectorDot[3], stateVectorDot[4], stateVectorDot[5],
- type, frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldEquinoctialOrbit<T> convertType(final FieldOrbit<T> orbit) {
- return (orbit.getType() == this) ? (FieldEquinoctialOrbit<T>) orbit : new FieldEquinoctialOrbit<>(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> void mapOrbitToArray(final FieldOrbit<T> orbit,
- final PositionAngle type,
- final T[] stateVector,
- final T[] stateVectorDot) {
- final FieldEquinoctialOrbit<T> equinoctialOrbit =
- (FieldEquinoctialOrbit<T>) OrbitType.EQUINOCTIAL.convertType(orbit);
- stateVector[0] = equinoctialOrbit.getA();
- stateVector[1] = equinoctialOrbit.getEquinoctialEx();
- stateVector[2] = equinoctialOrbit.getEquinoctialEy();
- stateVector[3] = equinoctialOrbit.getHx();
- stateVector[4] = equinoctialOrbit.getHy();
- stateVector[5] = equinoctialOrbit.getL(type);
- if (stateVectorDot != null) {
- if (orbit.hasDerivatives()) {
- stateVectorDot[0] = equinoctialOrbit.getADot();
- stateVectorDot[1] = equinoctialOrbit.getEquinoctialExDot();
- stateVectorDot[2] = equinoctialOrbit.getEquinoctialEyDot();
- stateVectorDot[3] = equinoctialOrbit.getHxDot();
- stateVectorDot[4] = equinoctialOrbit.getHyDot();
- stateVectorDot[5] = equinoctialOrbit.getLDot(type);
- } else {
- Arrays.fill(stateVectorDot, 0, 6, orbit.getDate().getField().getZero().add(Double.NaN));
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldEquinoctialOrbit<T> mapArrayToOrbit(final T[] stateVector,
- final T[] stateVectorDot,
- final PositionAngle type,
- final FieldAbsoluteDate<T> date,
- final T mu, final Frame frame) {
- if (stateVectorDot == null) {
- // we don't have orbit derivatives
- return new FieldEquinoctialOrbit<>(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- type, frame, date, mu);
- } else {
- // we have orbit derivatives
- return new FieldEquinoctialOrbit<>(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- stateVectorDot[0], stateVectorDot[1], stateVectorDot[2],
- stateVectorDot[3], stateVectorDot[4], stateVectorDot[5],
- type, frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public ParameterDriversList getDrivers(final double dP, final Orbit orbit, final PositionAngle type) {
- final ParameterDriversList drivers = new ParameterDriversList();
- final double[] array = new double[6];
- mapOrbitToArray(orbit, type, array, null);
- final double[] scale = scale(dP, orbit);
- final String name = type == PositionAngle.MEAN ?
- MEAN_LON_ARG :
- type == PositionAngle.ECCENTRIC ? ECC_LON_ARG : TRUE_LON_ARG;
- drivers.add(new ParameterDriver(A, array[0], scale[0], 0.0, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(E_X, array[1], scale[1], -1.0, 1.0));
- drivers.add(new ParameterDriver(E_Y, array[2], scale[2], -1.0, 1.0));
- drivers.add(new ParameterDriver(H_X, array[3], scale[3], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(H_Y, array[4], scale[4], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(name, array[5], scale[5], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- return drivers;
- }
- /** {@inheritDoc} */
- @Override
- public EquinoctialOrbit normalize(final Orbit orbit, final Orbit reference) {
- // convert input to proper type
- final EquinoctialOrbit eO = convertType(orbit);
- final EquinoctialOrbit eR = convertType(reference);
- // perform normalization
- if (eO.hasDerivatives()) {
- return new EquinoctialOrbit(eO.getA(),
- eO.getEquinoctialEx(),
- eO.getEquinoctialEy(),
- eO.getHx(),
- eO.getHy(),
- MathUtils.normalizeAngle(eO.getLv(), eR.getLv()),
- eO.getADot(),
- eO.getEquinoctialExDot(),
- eO.getEquinoctialEyDot(),
- eO.getHxDot(),
- eO.getHyDot(),
- eO.getLvDot(),
- PositionAngle.TRUE,
- eO.getFrame(),
- eO.getDate(),
- eO.getMu());
- } else {
- return new EquinoctialOrbit(eO.getA(),
- eO.getEquinoctialEx(),
- eO.getEquinoctialEy(),
- eO.getHx(),
- eO.getHy(),
- MathUtils.normalizeAngle(eO.getLv(), eR.getLv()),
- PositionAngle.TRUE,
- eO.getFrame(),
- eO.getDate(),
- eO.getMu());
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldEquinoctialOrbit<T> normalize(final FieldOrbit<T> orbit, final FieldOrbit<T> reference) {
- // convert input to proper type
- final FieldEquinoctialOrbit<T> eO = convertType(orbit);
- final FieldEquinoctialOrbit<T> eR = convertType(reference);
- // perform normalization
- if (eO.hasDerivatives()) {
- return new FieldEquinoctialOrbit<>(eO.getA(),
- eO.getEquinoctialEx(),
- eO.getEquinoctialEy(),
- eO.getHx(),
- eO.getHy(),
- MathUtils.normalizeAngle(eO.getLv(), eR.getLv()),
- eO.getADot(),
- eO.getEquinoctialExDot(),
- eO.getEquinoctialEyDot(),
- eO.getHxDot(),
- eO.getHyDot(),
- eO.getLvDot(),
- PositionAngle.TRUE,
- eO.getFrame(),
- eO.getDate(),
- eO.getMu());
- } else {
- return new FieldEquinoctialOrbit<>(eO.getA(),
- eO.getEquinoctialEx(),
- eO.getEquinoctialEy(),
- eO.getHx(),
- eO.getHy(),
- MathUtils.normalizeAngle(eO.getLv(), eR.getLv()),
- PositionAngle.TRUE,
- eO.getFrame(),
- eO.getDate(),
- eO.getMu());
- }
- }
- },
- /** Type for propagation in {@link KeplerianOrbit Keplerian parameters}. */
- KEPLERIAN {
- /** {@inheritDoc} */
- @Override
- public KeplerianOrbit convertType(final Orbit orbit) {
- return (orbit.getType() == this) ? (KeplerianOrbit) orbit : new KeplerianOrbit(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public void mapOrbitToArray(final Orbit orbit, final PositionAngle type,
- final double[] stateVector, final double[] stateVectorDot) {
- final KeplerianOrbit keplerianOrbit =
- (KeplerianOrbit) OrbitType.KEPLERIAN.convertType(orbit);
- stateVector[0] = keplerianOrbit.getA();
- stateVector[1] = keplerianOrbit.getE();
- stateVector[2] = keplerianOrbit.getI();
- stateVector[3] = keplerianOrbit.getPerigeeArgument();
- stateVector[4] = keplerianOrbit.getRightAscensionOfAscendingNode();
- stateVector[5] = keplerianOrbit.getAnomaly(type);
- if (stateVectorDot != null) {
- if (orbit.hasDerivatives()) {
- stateVectorDot[0] = keplerianOrbit.getADot();
- stateVectorDot[1] = keplerianOrbit.getEDot();
- stateVectorDot[2] = keplerianOrbit.getIDot();
- stateVectorDot[3] = keplerianOrbit.getPerigeeArgumentDot();
- stateVectorDot[4] = keplerianOrbit.getRightAscensionOfAscendingNodeDot();
- stateVectorDot[5] = keplerianOrbit.getAnomalyDot(type);
- } else {
- Arrays.fill(stateVectorDot, 0, 6, Double.NaN);
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public KeplerianOrbit mapArrayToOrbit(final double[] stateVector, final double[] stateVectorDot, final PositionAngle type,
- final AbsoluteDate date, final double mu, final Frame frame) {
- if (stateVectorDot == null) {
- // we don't have orbit derivatives
- return new KeplerianOrbit(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- type, frame, date, mu);
- } else {
- // we have orbit derivatives
- return new KeplerianOrbit(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- stateVectorDot[0], stateVectorDot[1], stateVectorDot[2],
- stateVectorDot[3], stateVectorDot[4], stateVectorDot[5],
- type, frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldKeplerianOrbit<T> convertType(final FieldOrbit<T> orbit) {
- return (orbit.getType() == this) ? (FieldKeplerianOrbit<T>) orbit : new FieldKeplerianOrbit<>(orbit);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> void mapOrbitToArray(final FieldOrbit<T> orbit,
- final PositionAngle type,
- final T[] stateVector,
- final T[] stateVectorDot) {
- final FieldKeplerianOrbit<T> keplerianOrbit =
- (FieldKeplerianOrbit<T>) OrbitType.KEPLERIAN.convertType(orbit);
- stateVector[0] = keplerianOrbit.getA();
- stateVector[1] = keplerianOrbit.getE();
- stateVector[2] = keplerianOrbit.getI();
- stateVector[3] = keplerianOrbit.getPerigeeArgument();
- stateVector[4] = keplerianOrbit.getRightAscensionOfAscendingNode();
- stateVector[5] = keplerianOrbit.getAnomaly(type);
- if (stateVectorDot != null) {
- if (orbit.hasDerivatives()) {
- stateVectorDot[0] = keplerianOrbit.getADot();
- stateVectorDot[1] = keplerianOrbit.getEDot();
- stateVectorDot[2] = keplerianOrbit.getIDot();
- stateVectorDot[3] = keplerianOrbit.getPerigeeArgumentDot();
- stateVectorDot[4] = keplerianOrbit.getRightAscensionOfAscendingNodeDot();
- stateVectorDot[5] = keplerianOrbit.getAnomalyDot(type);
- } else {
- Arrays.fill(stateVectorDot, 0, 6, orbit.getDate().getField().getZero().add(Double.NaN));
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldKeplerianOrbit<T> mapArrayToOrbit(final T[] stateVector,
- final T[] stateVectorDot,
- final PositionAngle type,
- final FieldAbsoluteDate<T> date,
- final T mu, final Frame frame) {
- if (stateVectorDot == null) {
- // we don't have orbit derivatives
- return new FieldKeplerianOrbit<>(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- type, frame, date, mu);
- } else {
- // we have orbit derivatives
- return new FieldKeplerianOrbit<>(stateVector[0], stateVector[1], stateVector[2],
- stateVector[3], stateVector[4], stateVector[5],
- stateVectorDot[0], stateVectorDot[1], stateVectorDot[2],
- stateVectorDot[3], stateVectorDot[4], stateVectorDot[5],
- type, frame, date, mu);
- }
- }
- /** {@inheritDoc} */
- @Override
- public ParameterDriversList getDrivers(final double dP, final Orbit orbit, final PositionAngle type) {
- final ParameterDriversList drivers = new ParameterDriversList();
- final double[] array = new double[6];
- mapOrbitToArray(orbit, type, array, null);
- final double[] scale = scale(dP, orbit);
- final String name = type == PositionAngle.MEAN ?
- MEAN_ANOM :
- type == PositionAngle.ECCENTRIC ? ECC_ANOM : TRUE_ANOM;
- drivers.add(new ParameterDriver(A, array[0], scale[0], 0.0, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(ECC, array[1], scale[1], 0.0, 1.0));
- drivers.add(new ParameterDriver(INC, array[2], scale[2], 0.0, FastMath.PI));
- drivers.add(new ParameterDriver(PA, array[3], scale[3], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(RAAN, array[4], scale[4], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- drivers.add(new ParameterDriver(name, array[5], scale[5], Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY));
- return drivers;
- }
- /** {@inheritDoc} */
- @Override
- public KeplerianOrbit normalize(final Orbit orbit, final Orbit reference) {
- // convert input to proper type
- final KeplerianOrbit kO = convertType(orbit);
- final KeplerianOrbit kR = convertType(reference);
- // perform normalization
- if (kO.hasDerivatives()) {
- return new KeplerianOrbit(kO.getA(),
- kO.getE(),
- kO.getI(),
- MathUtils.normalizeAngle(kO.getPerigeeArgument(), kR.getPerigeeArgument()),
- MathUtils.normalizeAngle(kO.getRightAscensionOfAscendingNode(), kR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(kO.getTrueAnomaly(), kR.getTrueAnomaly()),
- kO.getADot(),
- kO.getEDot(),
- kO.getIDot(),
- kO.getPerigeeArgumentDot(),
- kO.getRightAscensionOfAscendingNodeDot(),
- kO.getTrueAnomalyDot(),
- PositionAngle.TRUE,
- kO.getFrame(),
- kO.getDate(),
- kO.getMu());
- } else {
- return new KeplerianOrbit(kO.getA(),
- kO.getE(),
- kO.getI(),
- MathUtils.normalizeAngle(kO.getPerigeeArgument(), kR.getPerigeeArgument()),
- MathUtils.normalizeAngle(kO.getRightAscensionOfAscendingNode(), kR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(kO.getTrueAnomaly(), kR.getTrueAnomaly()),
- PositionAngle.TRUE,
- kO.getFrame(),
- kO.getDate(),
- kO.getMu());
- }
- }
- /** {@inheritDoc} */
- @Override
- public <T extends CalculusFieldElement<T>> FieldKeplerianOrbit<T> normalize(final FieldOrbit<T> orbit, final FieldOrbit<T> reference) {
- // convert input to proper type
- final FieldKeplerianOrbit<T> kO = convertType(orbit);
- final FieldKeplerianOrbit<T> kR = convertType(reference);
- // perform normalization
- if (kO.hasDerivatives()) {
- return new FieldKeplerianOrbit<>(kO.getA(),
- kO.getE(),
- kO.getI(),
- MathUtils.normalizeAngle(kO.getPerigeeArgument(), kR.getPerigeeArgument()),
- MathUtils.normalizeAngle(kO.getRightAscensionOfAscendingNode(), kR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(kO.getTrueAnomaly(), kR.getTrueAnomaly()),
- kO.getADot(),
- kO.getEDot(),
- kO.getIDot(),
- kO.getPerigeeArgumentDot(),
- kO.getRightAscensionOfAscendingNodeDot(),
- kO.getTrueAnomalyDot(),
- PositionAngle.TRUE,
- kO.getFrame(),
- kO.getDate(),
- kO.getMu());
- } else {
- return new FieldKeplerianOrbit<>(kO.getA(),
- kO.getE(),
- kO.getI(),
- MathUtils.normalizeAngle(kO.getPerigeeArgument(), kR.getPerigeeArgument()),
- MathUtils.normalizeAngle(kO.getRightAscensionOfAscendingNode(), kR.getRightAscensionOfAscendingNode()),
- MathUtils.normalizeAngle(kO.getTrueAnomaly(), kR.getTrueAnomaly()),
- PositionAngle.TRUE,
- kO.getFrame(),
- kO.getDate(),
- kO.getMu());
- }
- }
- };
- /** Name for position along X. */
- public static final String POS_X = "Px";
- /** Name for position along Y. */
- public static final String POS_Y = "Py";
- /** Name for position along Z. */
- public static final String POS_Z = "Pz";
- /** Name for velocity along X. */
- public static final String VEL_X = "Vx";
- /** Name for velocity along Y. */
- public static final String VEL_Y = "Vy";
- /** Name for velocity along Z. */
- public static final String VEL_Z = "Vz";
- /** Name for semi major axis. */
- public static final String A = "a";
- /** Name for eccentricity. */
- public static final String ECC = "e";
- /** Name for eccentricity vector first component. */
- public static final String E_X = "ex";
- /** Name for eccentricity vector second component. */
- public static final String E_Y = "ey";
- /** Name for inclination. */
- public static final String INC = "i";
- /** Name for inclination vector first component. */
- public static final String H_X = "hx";
- /** Name for inclination vector second component . */
- public static final String H_Y = "hy";
- /** Name for perigee argument. */
- public static final String PA = "ω";
- /** Name for right ascension of ascending node. */
- public static final String RAAN = "Ω";
- /** Name for mean anomaly. */
- public static final String MEAN_ANOM = "M";
- /** Name for eccentric anomaly. */
- public static final String ECC_ANOM = "E";
- /** Name for mean anomaly. */
- public static final String TRUE_ANOM = "v";
- /** Name for mean argument of latitude. */
- public static final String MEAN_LAT_ARG = "αM";
- /** Name for eccentric argument of latitude. */
- public static final String ECC_LAT_ARG = "αE";
- /** Name for mean argument of latitude. */
- public static final String TRUE_LAT_ARG = "αv";
- /** Name for mean argument of longitude. */
- public static final String MEAN_LON_ARG = "λM";
- /** Name for eccentric argument of longitude. */
- public static final String ECC_LON_ARG = "λE";
- /** Name for mean argument of longitude. */
- public static final String TRUE_LON_ARG = "λv";
- /** Convert an orbit to the instance type.
- * <p>
- * The returned orbit is the specified instance itself if its type already matches,
- * otherwise, a new orbit of the proper type created
- * </p>
- * @param orbit orbit to convert
- * @return converted orbit with type guaranteed to match (so it can be cast safely)
- */
- public abstract Orbit convertType(Orbit orbit);
- /** Convert orbit to state array.
- * <p>
- * Note that all implementations of this method <em>must</em> be consistent with the
- * implementation of the {@link org.orekit.orbits.Orbit#getJacobianWrtCartesian(
- * org.orekit.orbits.PositionAngle, double[][]) Orbit.getJacobianWrtCartesian}
- * method for the corresponding orbit type in terms of parameters order and meaning.
- * </p>
- * @param orbit orbit to map
- * @param type type of the angle
- * @param stateVector flat array into which the state vector should be mapped
- * (it can have more than 6 elements, extra elements are untouched)
- * @param stateVectorDot flat array into which the state vector derivative should be mapped
- * (it can be null if derivatives are not desired, and it can have more than 6 elements, extra elements are untouched)
- */
- public abstract void mapOrbitToArray(Orbit orbit, PositionAngle type, double[] stateVector, double[] stateVectorDot);
- /** Convert state array to orbital parameters.
- * <p>
- * Note that all implementations of this method <em>must</em> be consistent with the
- * implementation of the {@link org.orekit.orbits.Orbit#getJacobianWrtCartesian(
- * org.orekit.orbits.PositionAngle, double[][]) Orbit.getJacobianWrtCartesian}
- * method for the corresponding orbit type in terms of parameters order and meaning.
- * </p>
- * @param array state as a flat array
- * (it can have more than 6 elements, extra elements are ignored)
- * @param arrayDot state derivative as a flat array
- * (it can be null, in which case Keplerian motion is assumed,
- * and it can have more than 6 elements, extra elements are ignored)
- * @param type type of the angle
- * @param date integration date
- * @param mu central attraction coefficient used for propagation (m³/s²)
- * @param frame frame in which integration is performed
- * @return orbit corresponding to the flat array as a space dynamics object
- */
- public abstract Orbit mapArrayToOrbit(double[] array, double arrayDot[], PositionAngle type,
- AbsoluteDate date, double mu, Frame frame);
- /** Convert an orbit to the instance type.
- * <p>
- * The returned orbit is the specified instance itself if its type already matches,
- * otherwise, a new orbit of the proper type created
- * </p>
- * @param <T> CalculusFieldElement used
- * @param orbit orbit to convert
- * @return converted orbit with type guaranteed to match (so it can be cast safely)
- */
- public abstract <T extends CalculusFieldElement<T>> FieldOrbit<T> convertType(FieldOrbit<T> orbit);
- /** Convert orbit to state array.
- * <p>
- * Note that all implementations of this method <em>must</em> be consistent with the
- * implementation of the {@link org.orekit.orbits.Orbit#getJacobianWrtCartesian(
- * org.orekit.orbits.PositionAngle, double[][]) Orbit.getJacobianWrtCartesian}
- * method for the corresponding orbit type in terms of parameters order and meaning.
- * </p>
- * @param <T> CalculusFieldElement used
- * @param orbit orbit to map
- * @param type type of the angle
- * @param stateVector flat array into which the state vector should be mapped
- * (it can have more than 6 elements, extra elements are untouched)
- * @param stateVectorDot flat array into which the state vector derivative should be mapped
- * (it can be null if derivatives are not desired, and it can have more than 6 elements, extra elements are untouched)
- */
- public abstract <T extends CalculusFieldElement<T>>void mapOrbitToArray(FieldOrbit<T> orbit, PositionAngle type,
- T[] stateVector, T[] stateVectorDot);
- /** Convert state array to orbital parameters.
- * <p>
- * Note that all implementations of this method <em>must</em> be consistent with the
- * implementation of the {@link org.orekit.orbits.Orbit#getJacobianWrtCartesian(
- * org.orekit.orbits.PositionAngle, double[][]) Orbit.getJacobianWrtCartesian}
- * method for the corresponding orbit type in terms of parameters order and meaning.
- * </p>
- * @param <T> CalculusFieldElement used
- * @param array state as a flat array
- * (it can have more than 6 elements, extra elements are ignored)
- * @param arrayDot state derivative as a flat array
- * (it can be null, in which case Keplerian motion is assumed,
- * @param type type of the angle
- * @param date integration date
- * @param mu central attraction coefficient used for propagation (m³/s²)
- * @param frame frame in which integration is performed
- * @return orbit corresponding to the flat array as a space dynamics object
- */
- public abstract <T extends CalculusFieldElement<T>> FieldOrbit<T> mapArrayToOrbit(T[] array,
- T[] arrayDot,
- PositionAngle type,
- FieldAbsoluteDate<T> date,
- T mu, Frame frame);
- /** Get parameters drivers initialized from a reference orbit.
- * @param dP user specified position error
- * @param orbit reference orbit
- * @param type type of the angle
- * @return parameters drivers initialized from reference orbit
- */
- public abstract ParameterDriversList getDrivers(double dP, Orbit orbit,
- PositionAngle type);
- /** Normalize one orbit with respect to a reference one.
- * <p>
- * Given a, angular component ζ of an orbit and the corresponding
- * angular component ζᵣ in the reference orbit, the angular component
- * ζₙ of the normalized orbit will be ζₙ = ζ + 2kπ
- * where k is chosen such that ζᵣ - π ≤ ζₙ ≤ ζᵣ + π. This is intended
- * to avoid too large discontinuities and is particularly useful
- * for normalizing the orbit after an impulsive maneuver with respect
- * to the reference picked up before the maneuver.
- * </p>
- * @param <T> CalculusFieldElement used
- * @param orbit orbit to normalize
- * @param reference reference orbit
- * @return normalized orbit (the type is guaranteed to match {@link OrbitType})
- * @since 11.1
- */
- public abstract <T extends CalculusFieldElement<T>> FieldOrbit<T> normalize(FieldOrbit<T> orbit, FieldOrbit<T> reference);
- /** Normalize one orbit with respect to a reference one.
- * <p>
- * Given a, angular component ζ of an orbit and the corresponding
- * angular component ζᵣ in the reference orbit, the angular component
- * ζₙ of the normalized orbit will be ζₙ = ζ + 2kπ
- * where k is chosen such that ζᵣ - π ≤ ζₙ ≤ ζᵣ + π. This is intended
- * to avoid too large discontinuities and is particularly useful
- * for normalizing the orbit after an impulsive maneuver with respect
- * to the reference picked up before the maneuver.
- * </p>
- * @param orbit orbit to normalize
- * @param reference reference orbit
- * @return normalized orbit (the type is guaranteed to match {@link OrbitType})
- * @since 11.1
- */
- public abstract Orbit normalize(Orbit orbit, Orbit reference);
- /** Compute scaling factor for parameters drivers.
- * <p>
- * The scales are estimated from partial derivatives properties of orbits,
- * starting from a scalar position error specified by the user.
- * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
- * we get at constant energy (i.e. on a Keplerian trajectory):
- * <pre>
- * V r² |dV| = mu |dr|
- * </pre>
- * <p> So we deduce a scalar velocity error consistent with the position error.
- * From here, we apply orbits Jacobians matrices to get consistent scales
- * on orbital parameters.
- *
- * @param dP user specified position error
- * @param orbit reference orbit
- * @return scaling factor array
- */
- protected double[] scale(final double dP, final Orbit orbit) {
- // estimate the scalar velocity error
- final PVCoordinates pv = orbit.getPVCoordinates();
- final double r2 = pv.getPosition().getNormSq();
- final double v = pv.getVelocity().getNorm();
- final double dV = orbit.getMu() * dP / (v * r2);
- final double[] scale = new double[6];
- // convert the orbit to the desired type
- final double[][] jacobian = new double[6][6];
- final Orbit converted = convertType(orbit);
- converted.getJacobianWrtCartesian(PositionAngle.TRUE, jacobian);
- for (int i = 0; i < 6; ++i) {
- final double[] row = jacobian[i];
- scale[i] = FastMath.abs(row[0]) * dP +
- FastMath.abs(row[1]) * dP +
- FastMath.abs(row[2]) * dP +
- FastMath.abs(row[3]) * dV +
- FastMath.abs(row[4]) * dV +
- FastMath.abs(row[5]) * dV;
- if (Double.isNaN(scale[i])) {
- throw new OrekitException(OrekitMessages.SINGULAR_JACOBIAN_FOR_ORBIT_TYPE, this);
- }
- }
- return scale;
- }
- }