IodGibbs.java
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.iod;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.estimation.measurements.PV;
import org.orekit.estimation.measurements.Position;
import org.orekit.frames.Frame;
import org.orekit.orbits.KeplerianOrbit;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.PVCoordinates;
/**
* Gibbs initial orbit determination.
* An orbit is determined from three position vectors.
*
* Reference:
* Vallado, D., Fundamentals of Astrodynamics and Applications
*
* @author Joris Olympio
* @since 8.0
*
*/
public class IodGibbs {
/** Threshold for checking coplanr vectors. */
private static final double COPLANAR_THRESHOLD = FastMath.toRadians(5.);
/** gravitationnal constant. */
private final double mu;
/** Creator.
*
* @param mu gravitational constant
*/
public IodGibbs(final double mu) {
this.mu = mu;
}
/** Give an initial orbit estimation, assuming Keplerian motion.
* All observations should be from the same location.
*
* @param frame measurements frame
* @param p1 First position measurement
* @param p2 Second position measurement
* @param p3 Third position measurement
* @return an initial orbit estimation
* @since 11.0
*/
public KeplerianOrbit estimate(final Frame frame, final Position p1, final Position p2, final Position p3) {
return estimate(frame,
p1.getPosition(), p1.getDate(),
p2.getPosition(), p2.getDate(),
p3.getPosition(), p3.getDate());
}
/** Give an initial orbit estimation, assuming Keplerian motion.
* All observations should be from the same location.
*
* @param frame measure frame
* @param pv1 PV measure 1 taken in frame
* @param pv2 PV measure 2 taken in frame
* @param pv3 PV measure 3 taken in frame
* @return an initial orbit estimation
*/
public KeplerianOrbit estimate(final Frame frame, final PV pv1, final PV pv2, final PV pv3) {
return estimate(frame,
pv1.getPosition(), pv1.getDate(),
pv2.getPosition(), pv2.getDate(),
pv3.getPosition(), pv3.getDate());
}
/** Give an initial orbit estimation, assuming Keplerian motion.
* All observations should be from the same location.
*
* @param frame measure frame
* @param r1 position 1 measured in frame
* @param date1 date of measure 1
* @param r2 position 2 measured in frame
* @param date2 date of measure 2
* @param r3 position 3 measured in frame
* @param date3 date of measure 3
* @return an initial orbit estimation
*/
public KeplerianOrbit estimate(final Frame frame,
final Vector3D r1, final AbsoluteDate date1,
final Vector3D r2, final AbsoluteDate date2,
final Vector3D r3, final AbsoluteDate date3) {
// Checks measures are not at the same date
if (date1.equals(date2) || date1.equals(date3) || date2.equals(date3)) {
throw new OrekitException(OrekitMessages.NON_DIFFERENT_DATES_FOR_OBSERVATIONS, date1, date2, date3,
date2.durationFrom(date1), date3.durationFrom(date1), date3.durationFrom(date2));
}
// Checks measures are in the same plane
final double num = r1.normalize().dotProduct(r2.normalize().crossProduct(r3.normalize()));
final double alpha = FastMath.PI / 2.0 - FastMath.acos(num);
if (FastMath.abs(alpha) > COPLANAR_THRESHOLD) {
throw new OrekitException(OrekitMessages.NON_COPLANAR_POINTS);
}
final Vector3D D = r1.crossProduct(r2).add(r2.crossProduct(r3).add(r3.crossProduct(r1)));
final Vector3D N = (r2.crossProduct(r3)).scalarMultiply(r1.getNorm())
.add((r3.crossProduct(r1)).scalarMultiply(r2.getNorm()))
.add((r1.crossProduct(r2)).scalarMultiply(r3.getNorm()));
final Vector3D B = D.crossProduct(r2);
final Vector3D S = r1.scalarMultiply(r2.getNorm() - r3.getNorm())
.add(r2.scalarMultiply(r3.getNorm() - r1.getNorm())
.add(r3.scalarMultiply(r1.getNorm() - r2.getNorm())));
// middle velocity
final double vm = FastMath.sqrt(mu / (N.getNorm() * D.getNorm()));
final Vector3D vlEci = B.scalarMultiply(vm / r2.getNorm()).add(S.scalarMultiply(vm));
// compile a new middle point with position, velocity
final PVCoordinates pv = new PVCoordinates(r2, vlEci);
final AbsoluteDate date = date2;
// compute the equivalent Keplerian orbit
final KeplerianOrbit orbit = new KeplerianOrbit(pv, frame, date, mu);
//define the reverse orbit
final PVCoordinates pv2 = new PVCoordinates(r2, vlEci.scalarMultiply(-1));
final KeplerianOrbit orbit2 = new KeplerianOrbit(pv2, frame, date, mu);
//check which orbit is correct
final Vector3D estP3 = orbit.shiftedBy(date3.durationFrom(date2)).
getPVCoordinates().getPosition();
final double dist = estP3.subtract(r3).getNorm();
final Vector3D estP3_2 = orbit2.shiftedBy(date3.durationFrom(date2)).
getPVCoordinates().getPosition();
final double dist2 = estP3_2.subtract(r3).getNorm();
if (dist <= dist2) {
return orbit;
} else {
return orbit2;
}
}
}