PoissonSeries.java
- /* Copyright 2002-2022 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.data;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.MathUtils.SumAndResidual;
- /**
- * Class representing a Poisson series for nutation or ephemeris computations.
- * <p>
- * A Poisson series is composed of a time polynomial part and a non-polynomial
- * part which consist in summation series. The {@link SeriesTerm series terms}
- * are harmonic functions (combination of sines and cosines) of polynomial
- * <em>arguments</em>. The polynomial arguments are combinations of luni-solar or
- * planetary {@link BodiesElements elements}.
- * </p>
- * @author Luc Maisonobe
- * @see PoissonSeriesParser
- * @see SeriesTerm
- * @see PolynomialNutation
- */
- public class PoissonSeries {
- /** Polynomial part. */
- private final PolynomialNutation polynomial;
- /** Non-polynomial series. */
- private final Map<Long, SeriesTerm> series;
- /** Build a Poisson series from an IERS table file.
- * @param polynomial polynomial part (may be null)
- * @param series non-polynomial part
- */
- public PoissonSeries(final PolynomialNutation polynomial, final Map<Long, SeriesTerm> series) {
- this.polynomial = polynomial;
- this.series = series;
- }
- /** Get the polynomial part of the series.
- * @return polynomial part of the series.
- */
- public PolynomialNutation getPolynomial() {
- return polynomial;
- }
- /** Get the number of different terms in the non-polynomial part.
- * @return number of different terms in the non-polynomial part
- */
- public int getNonPolynomialSize() {
- return series.size();
- }
- /** Evaluate the value of the series.
- * @param elements bodies elements for nutation
- * @return value of the series
- */
- public double value(final BodiesElements elements) {
- // polynomial part
- final double p = polynomial.value(elements.getTC());
- // non-polynomial part
- double npHigh = 0;
- double npLow = 0;
- for (final Map.Entry<Long, SeriesTerm> entry : series.entrySet()) {
- final double v = entry.getValue().value(elements)[0];
- // Use 2Sum for high precision.
- final SumAndResidual sumAndResidual = MathUtils.twoSum(npHigh, v);
- npHigh = sumAndResidual.getSum();
- npLow += sumAndResidual.getResidual();
- }
- // add the polynomial and the non-polynomial parts
- return p + (npHigh + npLow);
- }
- /** Evaluate the value of the series.
- * @param elements bodies elements for nutation
- * @param <T> type fo the field elements
- * @return value of the series
- */
- public <T extends CalculusFieldElement<T>> T value(final FieldBodiesElements<T> elements) {
- // polynomial part
- final T tc = elements.getTC();
- final T p = polynomial.value(tc);
- // non-polynomial part
- T sum = tc.getField().getZero();
- for (final Map.Entry<Long, SeriesTerm> entry : series.entrySet()) {
- sum = sum.add(entry.getValue().value(elements)[0]);
- }
- // add the polynomial and the non-polynomial parts
- return p.add(sum);
- }
- /** This interface represents a fast evaluator for Poisson series.
- * @see PoissonSeries#compile(PoissonSeries...)
- * @since 6.1
- */
- public interface CompiledSeries {
- /** Evaluate a set of Poisson series.
- * @param elements bodies elements for nutation
- * @return value of the series
- */
- double[] value(BodiesElements elements);
- /** Evaluate time derivative of a set of Poisson series.
- * @param elements bodies elements for nutation
- * @return time derivative of the series
- */
- double[] derivative(BodiesElements elements);
- /** Evaluate a set of Poisson series.
- * @param elements bodies elements for nutation
- * @param <S> the type of the field elements
- * @return value of the series
- */
- <S extends CalculusFieldElement<S>> S[] value(FieldBodiesElements<S> elements);
- /** Evaluate time derivative of a set of Poisson series.
- * @param elements bodies elements for nutation
- * @param <S> the type of the field elements
- * @return time derivative of the series
- */
- <S extends CalculusFieldElement<S>> S[] derivative(FieldBodiesElements<S> elements);
- }
- /** Join several nutation series, for fast simultaneous evaluation.
- * @param poissonSeries Poisson series to join
- * @return a single function that evaluates all series together
- * @since 6.1
- */
- @SafeVarargs
- public static CompiledSeries compile(final PoissonSeries... poissonSeries) {
- // store all polynomials
- final PolynomialNutation[] polynomials = new PolynomialNutation[poissonSeries.length];
- for (int i = 0; i < polynomials.length; ++i) {
- polynomials[i] = poissonSeries[i].polynomial;
- }
- // gather all series terms
- final Map<Long, SeriesTerm> joinedMap = new HashMap<Long, SeriesTerm>();
- for (final PoissonSeries ps : poissonSeries) {
- for (Map.Entry<Long, SeriesTerm> entry : ps.series.entrySet()) {
- final long key = entry.getKey();
- if (!joinedMap.containsKey(key)) {
- // retrieve all Delaunay and planetary multipliers from the key
- final int[] m = NutationCodec.decode(key);
- // prepare a new term, ready to handle the required dimension
- final SeriesTerm term =
- SeriesTerm.buildTerm(m[0],
- m[1], m[2], m[3], m[4], m[5],
- m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13], m[14]);
- term.add(poissonSeries.length - 1, -1, Double.NaN, Double.NaN);
- // store it
- joinedMap.put(key, term);
- }
- }
- }
- // join series by sharing terms, in order to speed up evaluation
- // which is dominated by the computation of sine/cosine in each term
- for (int i = 0; i < poissonSeries.length; ++i) {
- for (final Map.Entry<Long, SeriesTerm> entry : poissonSeries[i].series.entrySet()) {
- final SeriesTerm singleTerm = entry.getValue();
- final SeriesTerm joinedTerm = joinedMap.get(entry.getKey());
- for (int degree = 0; degree <= singleTerm.getDegree(0); ++degree) {
- joinedTerm.add(i, degree,
- singleTerm.getSinCoeff(0, degree),
- singleTerm.getCosCoeff(0, degree));
- }
- }
- }
- // use a single array for faster access
- final SeriesTerm[] joinedTerms = new SeriesTerm[joinedMap.size()];
- int index = 0;
- for (final Map.Entry<Long, SeriesTerm> entry : joinedMap.entrySet()) {
- joinedTerms[index++] = entry.getValue();
- }
- return new CompiledSeries() {
- /** {@inheritDoc} */
- @Override
- public double[] value(final BodiesElements elements) {
- // non-polynomial part
- final double[] npHigh = new double[polynomials.length];
- final double[] npLow = new double[polynomials.length];
- for (final SeriesTerm term : joinedTerms) {
- final double[] termValue = term.value(elements);
- for (int i = 0; i < termValue.length; ++i) {
- // Use 2Sum for high precision.
- final SumAndResidual sumAndResidual = MathUtils.twoSum(npHigh[i], termValue[i]);
- npHigh[i] = sumAndResidual.getSum();
- npLow[i] += sumAndResidual.getResidual();
- }
- }
- // add residual and polynomial part
- for (int i = 0; i < npHigh.length; ++i) {
- npHigh[i] += npLow[i] + polynomials[i].value(elements.getTC());
- }
- return npHigh;
- }
- /** {@inheritDoc} */
- @Override
- public double[] derivative(final BodiesElements elements) {
- // non-polynomial part
- final double[] v = new double[polynomials.length];
- for (final SeriesTerm term : joinedTerms) {
- final double[] termDerivative = term.derivative(elements);
- for (int i = 0; i < termDerivative.length; ++i) {
- v[i] += termDerivative[i];
- }
- }
- // add polynomial part
- for (int i = 0; i < v.length; ++i) {
- v[i] += polynomials[i].derivative(elements.getTC());
- }
- return v;
- }
- /** {@inheritDoc} */
- @Override
- public <S extends CalculusFieldElement<S>> S[] value(final FieldBodiesElements<S> elements) {
- // non-polynomial part
- final S[] v = MathArrays.buildArray(elements.getTC().getField(), polynomials.length);
- for (final SeriesTerm term : joinedTerms) {
- final S[] termValue = term.value(elements);
- for (int i = 0; i < termValue.length; ++i) {
- v[i] = v[i].add(termValue[i]);
- }
- }
- // add polynomial part
- final S tc = elements.getTC();
- for (int i = 0; i < v.length; ++i) {
- v[i] = v[i].add(polynomials[i].value(tc));
- }
- return v;
- }
- /** {@inheritDoc} */
- @Override
- public <S extends CalculusFieldElement<S>> S[] derivative(final FieldBodiesElements<S> elements) {
- // non-polynomial part
- final S[] v = MathArrays.buildArray(elements.getTC().getField(), polynomials.length);
- for (final SeriesTerm term : joinedTerms) {
- final S[] termDerivative = term.derivative(elements);
- for (int i = 0; i < termDerivative.length; ++i) {
- v[i] = v[i].add(termDerivative[i]);
- }
- }
- // add polynomial part
- final S tc = elements.getTC();
- for (int i = 0; i < v.length; ++i) {
- v[i] = v[i].add(polynomials[i].derivative(tc));
- }
- return v;
- }
- };
- }
- }