FieldDSSTThirdBodyContext.java
- /* Copyright 2002-2020 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.forces;
- import org.hipparchus.Field;
- import org.hipparchus.RealFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.util.CombinatoricsUtils;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.orekit.bodies.CelestialBody;
- import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory;
- import org.orekit.propagation.semianalytical.dsst.utilities.FieldAuxiliaryElements;
- import org.orekit.propagation.semianalytical.dsst.utilities.UpperBounds;
- /**
- * This class is a container for the common "field" parameters used in {@link DSSTThirdBody}.
- * <p>
- * It performs parameters initialization at each integration step for the third
- * body attraction perturbation.
- * <p>
- * @author Bryan Cazabonne
- * @since 10.0
- */
- class FieldDSSTThirdBodyContext<T extends RealFieldElement <T>> extends FieldForceModelContext<T> {
- /** Max power for summation. */
- private static final int MAX_POWER = 22;
- /** Truncation tolerance for big, eccentric orbits. */
- private static final double BIG_TRUNCATION_TOLERANCE = 1.e-1;
- /** Truncation tolerance for small orbits. */
- private static final double SMALL_TRUNCATION_TOLERANCE = 1.9e-6;
- /** Maximum power for eccentricity used in short periodic computation. */
- private static final int MAX_ECCPOWER_SP = 4;
- /** Max power for a/R3 in the serie expansion. */
- private int maxAR3Pow;
- /** Max power for e in the serie expansion. */
- private int maxEccPow;
- /** a / R3 up to power maxAR3Pow. */
- private T[] aoR3Pow;
- /** Max power for e in the serie expansion (for short periodics). */
- private int maxEccPowShort;
- /** Max frequency of F. */
- private int maxFreqF;
- /** Qns coefficients. */
- private T[][] Qns;
- /** Standard gravitational parameter μ for the body in m³/s². */
- private final T gm;
- /** Distance from center of mass of the central body to the 3rd body. */
- private T R3;
- /** A = sqrt(μ * a). */
- private final T A;
- // Direction cosines of the symmetry axis
- /** α. */
- private final T alpha;
- /** β. */
- private final T beta;
- /** γ. */
- private final T gamma;
- /** B². */
- private final T BB;
- /** B³. */
- private final T BBB;
- /** Χ = 1 / sqrt(1 - e²) = 1 / B. */
- private final T X;
- /** Χ². */
- private final T XX;
- /** Χ³. */
- private final T XXX;
- /** -2 * a / A. */
- private final T m2aoA;
- /** B / A. */
- private final T BoA;
- /** 1 / (A * B). */
- private final T ooAB;
- /** -C / (2 * A * B). */
- private final T mCo2AB;
- /** B / A(1 + B). */
- private final T BoABpo;
- /** mu3 / R3. */
- private final T muoR3;
- /** b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).*/
- private final T b;
- /** h * Χ³. */
- private final T hXXX;
- /** k * Χ³. */
- private final T kXXX;
- /** Keplerian mean motion. */
- private final T motion;
- /**
- * Simple constructor.
- *
- * @param auxiliaryElements auxiliary elements related to the current orbit
- * @param thirdBody body the 3rd body to consider
- * @param parameters values of the force model parameters
- */
- FieldDSSTThirdBodyContext(final FieldAuxiliaryElements<T> auxiliaryElements,
- final CelestialBody thirdBody,
- final T[] parameters) {
- super(auxiliaryElements);
- // Field for array building
- final Field<T> field = auxiliaryElements.getDate().getField();
- final T zero = field.getZero();
- final T mu = parameters[1];
- A = FastMath.sqrt(mu.multiply(auxiliaryElements.getSma()));
- this.gm = parameters[0];
- // Keplerian mean motion
- final T absA = FastMath.abs(auxiliaryElements.getSma());
- motion = FastMath.sqrt(mu.divide(absA)).divide(absA);
- // Distance from center of mass of the central body to the 3rd body
- final FieldVector3D<T> bodyPos = thirdBody.getPVCoordinates(auxiliaryElements.getDate(), auxiliaryElements.getFrame()).getPosition();
- R3 = bodyPos.getNorm();
- // Direction cosines
- final FieldVector3D<T> bodyDir = bodyPos.normalize();
- alpha = (T) bodyDir.dotProduct(auxiliaryElements.getVectorF());
- beta = (T) bodyDir.dotProduct(auxiliaryElements.getVectorG());
- gamma = (T) bodyDir.dotProduct(auxiliaryElements.getVectorW());
- //Χ<sup>-2</sup>.
- BB = auxiliaryElements.getB().multiply(auxiliaryElements.getB());
- //Χ<sup>-3</sup>.
- BBB = BB.multiply(auxiliaryElements.getB());
- //b = 1 / (1 + B)
- b = auxiliaryElements.getB().add(1.).reciprocal();
- // Χ
- X = auxiliaryElements.getB().reciprocal();
- XX = X.multiply(X);
- XXX = X.multiply(XX);
- // -2 * a / A
- m2aoA = auxiliaryElements.getSma().multiply(-2.).divide(A);
- // B / A
- BoA = auxiliaryElements.getB().divide(A);
- // 1 / AB
- ooAB = (A.multiply(auxiliaryElements.getB())).reciprocal();
- // -C / 2AB
- mCo2AB = auxiliaryElements.getC().multiply(ooAB).divide(2.).negate();
- // B / A(1 + B)
- BoABpo = BoA.divide(auxiliaryElements.getB().add(1.));
- // mu3 / R3
- muoR3 = R3.divide(gm).reciprocal();
- //h * Χ³
- hXXX = XXX.multiply(auxiliaryElements.getH());
- //k * Χ³
- kXXX = XXX.multiply(auxiliaryElements.getK());
- // Truncation tolerance.
- final T aoR3 = auxiliaryElements.getSma().divide(R3);
- final double tol = ( aoR3.getReal() > .3 || (aoR3.getReal() > .15 && auxiliaryElements.getEcc().getReal() > .25) ) ? BIG_TRUNCATION_TOLERANCE : SMALL_TRUNCATION_TOLERANCE;
- // Utilities for truncation
- // Set a lower bound for eccentricity
- final T eo2 = FastMath.max(zero.add(0.0025), auxiliaryElements.getEcc().divide(2.));
- final T x2o2 = XX.divide(2.);
- final T[] eccPwr = MathArrays.buildArray(field, MAX_POWER);
- final T[] chiPwr = MathArrays.buildArray(field, MAX_POWER);
- eccPwr[0] = zero.add(1.);
- chiPwr[0] = X;
- for (int i = 1; i < MAX_POWER; i++) {
- eccPwr[i] = eccPwr[i - 1].multiply(eo2);
- chiPwr[i] = chiPwr[i - 1].multiply(x2o2);
- }
- // Auxiliary quantities.
- final T ao2rxx = aoR3.divide(XX.multiply(2.));
- T xmuarn = ao2rxx.multiply(ao2rxx).multiply(gm).divide(X.multiply(R3));
- T term = zero;
- // Compute max power for a/R3 and e.
- maxAR3Pow = 2;
- maxEccPow = 0;
- int n = 2;
- int m = 2;
- int nsmd2 = 0;
- do {
- term = xmuarn.multiply((CombinatoricsUtils.factorialDouble(n + m) / (CombinatoricsUtils.factorialDouble(nsmd2) * CombinatoricsUtils.factorialDouble(nsmd2 + m))) *
- (CombinatoricsUtils.factorialDouble(n + m + 1) / (CombinatoricsUtils.factorialDouble(m) * CombinatoricsUtils.factorialDouble(n + 1))) *
- (CombinatoricsUtils.factorialDouble(n - m + 1) / CombinatoricsUtils.factorialDouble(n + 1))).
- multiply(eccPwr[m]).multiply(UpperBounds.getDnl(XX, chiPwr[m], n + 2, m));
- if (term.getReal() < tol) {
- if (m == 0) {
- break;
- } else if (m < 2) {
- xmuarn = xmuarn.multiply(ao2rxx);
- m = 0;
- n++;
- nsmd2++;
- } else {
- m -= 2;
- nsmd2++;
- }
- } else {
- maxAR3Pow = n;
- maxEccPow = FastMath.max(m, maxEccPow);
- xmuarn = xmuarn.multiply(ao2rxx);
- m++;
- n++;
- }
- } while (n < MAX_POWER);
- maxEccPow = FastMath.min(maxAR3Pow, maxEccPow);
- // allocate the array aoR3Pow
- aoR3Pow = MathArrays.buildArray(field, maxAR3Pow + 1);
- aoR3Pow[0] = field.getOne();
- for (int i = 1; i <= maxAR3Pow; i++) {
- aoR3Pow[i] = aoR3.multiply(aoR3Pow[i - 1]);
- }
- maxFreqF = maxAR3Pow + 1;
- maxEccPowShort = MAX_ECCPOWER_SP;
- Qns = CoefficientsFactory.computeQns(gamma, maxAR3Pow, FastMath.max(maxEccPow, maxEccPowShort));
- }
- /** Get A = sqrt(μ * a).
- * @return A
- */
- public T getA() {
- return A;
- }
- /** Get direction cosine α for central body.
- * @return α
- */
- public T getAlpha() {
- return alpha;
- }
- /** Get direction cosine β for central body.
- * @return β
- */
- public T getBeta() {
- return beta;
- }
- /** Get direction cosine γ for central body.
- * @return γ
- */
- public T getGamma() {
- return gamma;
- }
- /** Get B².
- * @return B²
- */
- public T getBB() {
- return BB;
- }
- /** Get B³.
- * @return B³
- */
- public T getBBB() {
- return BBB;
- }
- /** Get b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).
- * @return b
- */
- public T getb() {
- return b;
- }
- /** Get Χ = 1 / sqrt(1 - e²) = 1 / B.
- * @return Χ
- */
- public T getX() {
- return X;
- }
- /** Get m2aoA = -2 * a / A.
- * @return m2aoA
- */
- public T getM2aoA() {
- return m2aoA;
- }
- /** Get B / A.
- * @return BoA
- */
- public T getBoA() {
- return BoA;
- }
- /** Get ooAB = 1 / (A * B).
- * @return ooAB
- */
- public T getOoAB() {
- return ooAB;
- }
- /** Get mCo2AB = -C / 2AB.
- * @return mCo2AB
- */
- public T getMCo2AB() {
- return mCo2AB;
- }
- /** Get BoABpo = B / A(1 + B).
- * @return BoABpo
- */
- public T getBoABpo() {
- return BoABpo;
- }
- /** Get muoR3 = mu3 / R3.
- * @return muoR3
- */
- public T getMuoR3() {
- return muoR3;
- }
- /** Get hXXX = h * Χ³.
- * @return hXXX
- */
- public T getHXXX() {
- return hXXX;
- }
- /** Get kXXX = h * Χ³.
- * @return kXXX
- */
- public T getKXXX() {
- return kXXX;
- }
- /** Get the value of max power for a/R3 in the serie expansion.
- * @return maxAR3Pow
- */
- public int getMaxAR3Pow() {
- return maxAR3Pow;
- }
- /** Get the value of max power for e in the serie expansion.
- * @return maxEccPow
- */
- public int getMaxEccPow() {
- return maxEccPow;
- }
- /** Get the value of a / R3 up to power maxAR3Pow.
- * @return aoR3Pow
- */
- public T[] getAoR3Pow() {
- return aoR3Pow;
- }
- /** Get the value of max frequency of F.
- * @return maxFreqF
- */
- public int getMaxFreqF() {
- return maxFreqF;
- }
- /** Get the Keplerian mean motion.
- * <p>The Keplerian mean motion is computed directly from semi major axis
- * and central acceleration constant.</p>
- * @return Keplerian mean motion in radians per second
- */
- public T getMeanMotion() {
- return motion;
- }
- /** Get the value of Qns coefficients.
- * @return Qns
- */
- public T[][] getQns() {
- return Qns;
- }
- }