DSSTThirdBodyContext.java
- /* Copyright 2002-2020 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.semianalytical.dsst.forces;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.CombinatoricsUtils;
- import org.hipparchus.util.FastMath;
- import org.orekit.bodies.CelestialBody;
- import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
- import org.orekit.propagation.semianalytical.dsst.utilities.CoefficientsFactory;
- import org.orekit.propagation.semianalytical.dsst.utilities.UpperBounds;
- /**
- * This class is a container for the common parameters used in {@link DSSTThirdBody}.
- * <p>
- * It performs parameters initialization at each integration step for the third
- * body attraction perturbation.
- * <p>
- * @author Bryan Cazabonne
- * @since 10.0
- */
- class DSSTThirdBodyContext extends ForceModelContext {
- /** Max power for summation. */
- private static final int MAX_POWER = 22;
- /** Truncation tolerance for big, eccentric orbits. */
- private static final double BIG_TRUNCATION_TOLERANCE = 1.e-1;
- /** Truncation tolerance for small orbits. */
- private static final double SMALL_TRUNCATION_TOLERANCE = 1.9e-6;
- /** Maximum power for eccentricity used in short periodic computation. */
- private static final int MAX_ECCPOWER_SP = 4;
- /** Max power for a/R3 in the serie expansion. */
- private int maxAR3Pow;
- /** Max power for e in the serie expansion. */
- private int maxEccPow;
- /** a / R3 up to power maxAR3Pow. */
- private double[] aoR3Pow;
- /** Max power for e in the serie expansion (for short periodics). */
- private int maxEccPowShort;
- /** Max frequency of F. */
- private int maxFreqF;
- /** Qns coefficients. */
- private double[][] Qns;
- /** Standard gravitational parameter μ for the body in m³/s². */
- private final double gm;
- /** Distance from center of mass of the central body to the 3rd body. */
- private double R3;
- /** A = sqrt(μ * a). */
- private final double A;
- // Direction cosines of the symmetry axis
- /** α. */
- private double alpha;
- /** β. */
- private double beta;
- /** γ. */
- private double gamma;
- /** B². */
- private double BB;
- /** B³. */
- private double BBB;
- /** Χ = 1 / sqrt(1 - e²) = 1 / B. */
- private double X;
- /** Χ². */
- private double XX;
- /** Χ³. */
- private double XXX;
- /** -2 * a / A. */
- private double m2aoA;
- /** B / A. */
- private double BoA;
- /** 1 / (A * B). */
- private double ooAB;
- /** -C / (2 * A * B). */
- private double mCo2AB;
- /** B / A(1 + B). */
- private double BoABpo;
- /** mu3 / R3. */
- private double muoR3;
- /** b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).*/
- private double b;
- /** h * Χ³. */
- private double hXXX;
- /** k * Χ³. */
- private double kXXX;
- /** Keplerian mean motion. */
- private final double motion;
- /**
- * Simple constructor.
- *
- * @param auxiliaryElements auxiliary elements related to the current orbit
- * @param thirdBody body the 3rd body to consider
- * @param parameters values of the force model parameters
- */
- DSSTThirdBodyContext(final AuxiliaryElements auxiliaryElements, final CelestialBody thirdBody, final double[] parameters) {
- super(auxiliaryElements);
- final double mu = parameters[1];
- A = FastMath.sqrt(mu * auxiliaryElements.getSma());
- this.gm = parameters[0];
- // Keplerian Mean Motion
- final double absA = FastMath.abs(auxiliaryElements.getSma());
- motion = FastMath.sqrt(mu / absA) / absA;
- // Distance from center of mass of the central body to the 3rd body
- final Vector3D bodyPos = thirdBody.getPVCoordinates(auxiliaryElements.getDate(), auxiliaryElements.getFrame()).getPosition();
- R3 = bodyPos.getNorm();
- // Direction cosines
- final Vector3D bodyDir = bodyPos.normalize();
- alpha = bodyDir.dotProduct(auxiliaryElements.getVectorF());
- beta = bodyDir.dotProduct(auxiliaryElements.getVectorG());
- gamma = bodyDir.dotProduct(auxiliaryElements.getVectorW());
- //Χ<sup>-2</sup>.
- BB = auxiliaryElements.getB() * auxiliaryElements.getB();
- //Χ<sup>-3</sup>.
- BBB = BB * auxiliaryElements.getB();
- //b = 1 / (1 + B)
- b = 1. / (1. + auxiliaryElements.getB());
- // Χ
- X = 1. / auxiliaryElements.getB();
- XX = X * X;
- XXX = X * XX;
- // -2 * a / A
- m2aoA = -2. * auxiliaryElements.getSma() / A;
- // B / A
- BoA = auxiliaryElements.getB() / A;
- // 1 / AB
- ooAB = 1. / (A * auxiliaryElements.getB());
- // -C / 2AB
- mCo2AB = -auxiliaryElements.getC() * ooAB / 2.;
- // B / A(1 + B)
- BoABpo = BoA / (1. + auxiliaryElements.getB());
- // mu3 / R3
- muoR3 = gm / R3;
- //h * Χ³
- hXXX = auxiliaryElements.getH() * XXX;
- //k * Χ³
- kXXX = auxiliaryElements.getK() * XXX;
- // Truncation tolerance.
- final double aoR3 = auxiliaryElements.getSma() / R3;
- final double tol = ( aoR3 > .3 || (aoR3 > .15 && auxiliaryElements.getEcc() > .25) ) ? BIG_TRUNCATION_TOLERANCE : SMALL_TRUNCATION_TOLERANCE;
- // Utilities for truncation
- // Set a lower bound for eccentricity
- final double eo2 = FastMath.max(0.0025, auxiliaryElements.getEcc() / 2.);
- final double x2o2 = XX / 2.;
- final double[] eccPwr = new double[MAX_POWER];
- final double[] chiPwr = new double[MAX_POWER];
- eccPwr[0] = 1.;
- chiPwr[0] = X;
- for (int i = 1; i < MAX_POWER; i++) {
- eccPwr[i] = eccPwr[i - 1] * eo2;
- chiPwr[i] = chiPwr[i - 1] * x2o2;
- }
- // Auxiliary quantities.
- final double ao2rxx = aoR3 / (2. * XX);
- double xmuarn = ao2rxx * ao2rxx * gm / (X * R3);
- double term = 0.;
- // Compute max power for a/R3 and e.
- maxAR3Pow = 2;
- maxEccPow = 0;
- int n = 2;
- int m = 2;
- int nsmd2 = 0;
- do {
- // Upper bound for Tnm.
- term = xmuarn *
- (CombinatoricsUtils.factorialDouble(n + m) / (CombinatoricsUtils.factorialDouble(nsmd2) * CombinatoricsUtils.factorialDouble(nsmd2 + m))) *
- (CombinatoricsUtils.factorialDouble(n + m + 1) / (CombinatoricsUtils.factorialDouble(m) * CombinatoricsUtils.factorialDouble(n + 1))) *
- (CombinatoricsUtils.factorialDouble(n - m + 1) / CombinatoricsUtils.factorialDouble(n + 1)) *
- eccPwr[m] * UpperBounds.getDnl(XX, chiPwr[m], n + 2, m);
- if (term < tol) {
- if (m == 0) {
- break;
- } else if (m < 2) {
- xmuarn *= ao2rxx;
- m = 0;
- n++;
- nsmd2++;
- } else {
- m -= 2;
- nsmd2++;
- }
- } else {
- maxAR3Pow = n;
- maxEccPow = FastMath.max(m, maxEccPow);
- xmuarn *= ao2rxx;
- m++;
- n++;
- }
- } while (n < MAX_POWER);
- maxEccPow = FastMath.min(maxAR3Pow, maxEccPow);
- // allocate the array aoR3Pow
- aoR3Pow = new double[maxAR3Pow + 1];
- aoR3Pow[0] = 1.;
- for (int i = 1; i <= maxAR3Pow; i++) {
- aoR3Pow[i] = aoR3 * aoR3Pow[i - 1];
- }
- maxFreqF = maxAR3Pow + 1;
- maxEccPowShort = MAX_ECCPOWER_SP;
- Qns = CoefficientsFactory.computeQns(gamma, maxAR3Pow, FastMath.max(maxEccPow, maxEccPowShort));
- }
- /** Get A = sqrt(μ * a).
- * @return A
- */
- public double getA() {
- return A;
- }
- /** Get direction cosine α for central body.
- * @return α
- */
- public double getAlpha() {
- return alpha;
- }
- /** Get direction cosine β for central body.
- * @return β
- */
- public double getBeta() {
- return beta;
- }
- /** Get direction cosine γ for central body.
- * @return γ
- */
- public double getGamma() {
- return gamma;
- }
- /** Get B².
- * @return B²
- */
- public double getBB() {
- return BB;
- }
- /** Get B³.
- * @return B³
- */
- public double getBBB() {
- return BBB;
- }
- /** Get b = 1 / (1 + sqrt(1 - e²)) = 1 / (1 + B).
- * @return b
- */
- public double getb() {
- return b;
- }
- /** Get Χ = 1 / sqrt(1 - e²) = 1 / B.
- * @return Χ
- */
- public double getX() {
- return X;
- }
- /** Get m2aoA = -2 * a / A.
- * @return m2aoA
- */
- public double getM2aoA() {
- return m2aoA;
- }
- /** Get B / A.
- * @return BoA
- */
- public double getBoA() {
- return BoA;
- }
- /** Get ooAB = 1 / (A * B).
- * @return ooAB
- */
- public double getOoAB() {
- return ooAB;
- }
- /** Get mCo2AB = -C / 2AB.
- * @return mCo2AB
- */
- public double getMCo2AB() {
- return mCo2AB;
- }
- /** Get BoABpo = B / A(1 + B).
- * @return BoABpo
- */
- public double getBoABpo() {
- return BoABpo;
- }
- /** Get muoR3 = mu3 / R3.
- * @return muoR3
- */
- public double getMuoR3() {
- return muoR3;
- }
- /** Get hXXX = h * Χ³.
- * @return hXXX
- */
- public double getHXXX() {
- return hXXX;
- }
- /** Get kXXX = h * Χ³.
- * @return kXXX
- */
- public double getKXXX() {
- return kXXX;
- }
- /** Get the value of max power for a/R3 in the serie expansion.
- * @return maxAR3Pow
- */
- public int getMaxAR3Pow() {
- return maxAR3Pow;
- }
- /** Get the value of max power for e in the serie expansion.
- * @return maxEccPow
- */
- public int getMaxEccPow() {
- return maxEccPow;
- }
- /** Get the value of a / R3 up to power maxAR3Pow.
- * @return aoR3Pow
- */
- public double[] getAoR3Pow() {
- return aoR3Pow;
- }
- /** Get the value of max frequency of F.
- * @return maxFreqF
- */
- public int getMaxFreqF() {
- return maxFreqF;
- }
- /** Get the Keplerian mean motion.
- * <p>The Keplerian mean motion is computed directly from semi major axis
- * and central acceleration constant.</p>
- * @return Keplerian mean motion in radians per second
- */
- public double getMeanMotion() {
- return motion;
- }
- /** Get the value of Qns coefficients.
- * @return Qns
- */
- public double[][] getQns() {
- return Qns;
- }
- }