PredefinedIAUPoles.java
/* Copyright 2002-2020 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.bodies;
import java.util.ArrayList;
import java.util.List;
import org.hipparchus.RealFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.FieldSinCos;
import org.hipparchus.util.SinCos;
import org.orekit.bodies.JPLEphemeridesLoader.EphemerisType;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.time.TimeScales;
import org.orekit.utils.Constants;
/** Enumerate for predefined IAU poles.
* <p>The pole models provided here come from the <a
* href="http://astropedia.astrogeology.usgs.gov/alfresco/d/d/workspace/SpacesStore/28fd9e81-1964-44d6-a58b-fbbf61e64e15/WGCCRE2009reprint.pdf">
* 2009 report</a> and the <a href="http://astropedia.astrogeology.usgs.gov/alfresco/d/d/workspace/SpacesStore/04d348b0-eb2b-46a2-abe9-6effacb37763/WGCCRE-Erratum-2011reprint.pdf">
* 2011 erratum</a> of the IAU/IAG Working Group on Cartographic Coordinates
* and Rotational Elements of the Planets and Satellites (WGCCRE). Note that these value
* differ from earliest reports (before 2005).
*</p>
* @author Luc Maisonobe
* @since 9.0
*/
abstract class PredefinedIAUPoles implements IAUPole {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Time scales. */
private final TimeScales timeScales;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
PredefinedIAUPoles(final TimeScales timeScales) {
this.timeScales = timeScales;
}
/** IAU pole and prime meridian model for Sun. */
private static class Sun extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the prime meridian. */
private static final double W0 = 84.176;
/** Rate term of the prime meridian. */
private static final double W_DOT = 14.1844000;
/** Fixed pole. */
private final Vector3D pole = new Vector3D(FastMath.toRadians(286.13),
FastMath.toRadians(63.87));
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Sun(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
return pole;
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
return new FieldVector3D<>(date.getField(), pole);
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W0));
}
}
/** IAU pole and prime meridian model for Mercury. */
private static class Mercury extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the right ascension of the pole. */
private static final double ALPHA_0 = 281.0097;
/** Rate term of the right ascension of the pole. */
private static final double ALPHA_DOT = -0.0328;
/** Constant term of the declination of the pole. */
private static final double DELTA_0 = 61.4143;
/** Rate term of the declination of the pole. */
private static final double DELTA_DOT = -0.0049;
/** Constant term of the prime meridian. */
private static final double W_0 = 329.5469;
/** Rate term of the prime meridian. */
private static final double W_DOT = 6.1385025;
/** M1 coefficient of the prime meridian. */
private static final double M1_COEFF = 0.00993822;
/** M2 coefficient of the prime meridian. */
private static final double M2_COEFF = -0.00104581;
/** M3 coefficient of the prime meridian. */
private static final double M3_COEFF = -0.00010280;
/** M4 coefficient of the prime meridian. */
private static final double M4_COEFF = -0.00002364;
/** M5 coefficient of the prime meridian. */
private static final double M5_COEFF = -0.00000532;
/** Constant term of the M1 angle. */
private static final double M1_0 = 174.791086;
/** Rate term of the M1 angle. */
private static final double M1_DOT = 4.092335;
/** Constant term of the M2 angle. */
private static final double M2_0 = 349.582171;
/** Rate term of the M1 angle. */
private static final double M2_DOT = 8.184670;
/** Constant term of the M3 angle. */
private static final double M3_0 = 164.373257;
/** Rate term of the M1 angle. */
private static final double M3_DOT = 12.277005;
/** Constant term of the M4 angle. */
private static final double M4_0 = 339.164343;
/** Rate term of the M1 angle. */
private static final double M4_DOT = 16.369340;
/** Constant term of the M5 angle. */
private static final double M5_0 = 153.955429;
/** Rate term of the M1 angle. */
private static final double M5_DOT = 20.461675;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Mercury(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
final double t = t(date);
return new Vector3D(FastMath.toRadians(t * ALPHA_DOT + ALPHA_0),
FastMath.toRadians(t * DELTA_DOT + DELTA_0));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
final T t = t(date);
return new FieldVector3D<>(FastMath.toRadians(t.multiply(ALPHA_DOT).add(ALPHA_0)),
FastMath.toRadians(t.multiply(DELTA_DOT).add(DELTA_0)));
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
final double d = d(date);
return FastMath.toRadians(d(date) * W_DOT + W_0 +
FastMath.sin(FastMath.toRadians(d * M1_DOT + M1_0)) * M1_COEFF +
FastMath.sin(FastMath.toRadians(d * M2_DOT + M2_0)) * M2_COEFF +
FastMath.sin(FastMath.toRadians(d * M3_DOT + M3_0)) * M3_COEFF +
FastMath.sin(FastMath.toRadians(d * M4_DOT + M4_0)) * M4_COEFF +
FastMath.sin(FastMath.toRadians(d * M5_DOT + M5_0)) * M5_COEFF);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
final T d = d(date);
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0).
add(FastMath.toRadians(d.multiply(M1_DOT).add(M1_0)).sin().multiply(M1_COEFF)).
add(FastMath.toRadians(d.multiply(M2_DOT).add(M2_0)).sin().multiply(M2_COEFF)).
add(FastMath.toRadians(d.multiply(M3_DOT).add(M3_0)).sin().multiply(M3_COEFF)).
add(FastMath.toRadians(d.multiply(M4_DOT).add(M4_0)).sin().multiply(M4_COEFF)).
add(FastMath.toRadians(d.multiply(M5_DOT).add(M5_0)).sin().multiply(M5_COEFF)));
}
}
/** IAU pole and prime meridian model for Venus. */
private static class Venus extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the prime meridian. */
private static final double W_0 = 160.20;
/** Rate term of the prime meridian. */
private static final double W_DOT = -1.4813688;
/** Fixed pole. */
private final Vector3D pole = new Vector3D(FastMath.toRadians(272.76),
FastMath.toRadians(67.16));
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Venus(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
return pole;
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
return new FieldVector3D<>(date.getField(), pole);
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0));
}
}
/** IAU pole and prime meridian model for Earth. */
private static class Earth extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the right ascension of the pole. */
private static final double ALPHA_0 = 0.00;
/** Rate term of the right ascension of the pole. */
private static final double ALPHA_DOT = -0.641;
/** Constant term of the declination of the pole. */
private static final double DELTA_0 = 90.00;
/** Rate term of the declination of the pole. */
private static final double DELTA_DOT = -0.557;
/** Constant term of the prime meridian. */
private static final double W_0 = 190.147;
/** Rate term of the prime meridian. */
private static final double W_DOT = 360.9856235;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Earth(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
final double t = t(date);
return new Vector3D(FastMath.toRadians(t * ALPHA_DOT + ALPHA_0),
FastMath.toRadians(t * DELTA_DOT + DELTA_0));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
final T t = t(date);
return new FieldVector3D<>(FastMath.toRadians(t.multiply(ALPHA_DOT).add(ALPHA_0)),
FastMath.toRadians(t.multiply(DELTA_DOT).add(DELTA_0)));
}
/** {@inheritDoc} */
@Override
public Vector3D getNode(final AbsoluteDate date) {
final double t = t(date);
return new Vector3D(FastMath.toRadians(t * ALPHA_DOT + ALPHA_0 + 90.0),
0.0);
}
/** {@inheritDoc} */
@Override
public <T extends RealFieldElement<T>> FieldVector3D<T> getNode(final FieldAbsoluteDate<T> date) {
final T t = t(date);
return new FieldVector3D<>(FastMath.toRadians(t.multiply(ALPHA_DOT).add(ALPHA_0 + 90.0)),
date.getField().getZero());
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0));
}
}
/** IAU pole and prime meridian model for the Moon. */
private static class Moon extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the right ascension of the pole. */
private static final double ALPHA_0 = 269.9949;
/** Rate term of the right ascension of the pole. */
private static final double ALPHA_DOT = 0.0031;
/** Constant term of the declination of the pole. */
private static final double DELTA_0 = 66.5392;
/** Rate term of the declination of the pole. */
private static final double DELTA_DOT = 0.0130;
/** Constant term of the prime meridian. */
private static final double W_0 = 38.3213;
/** Rate term of the prime meridian. */
private static final double W_DOT = 13.17635815;
/** Rate term of the prime meridian. */
private static final double W_DOT_DOT = -1.4e-12;
/** Constant term of the E1 angle. */
private static final double E01_0 = 125.045;
/** Rate term of the E1 angle. */
private static final double E01_DOT = -0.0529921;
/** Sine coefficient of the E1 angle. */
private static final double E01_SIN = -3.8787;
/** Cosine coefficient of the E1 angle. */
private static final double E01_COS = 1.5419;
/** Sine coefficient of the E1 angle, for the prime meridian. */
private static final double E01_W_SIN = 3.5610;
/** Constant term of the E2 angle. */
private static final double E02_0 = 250.089;
/** Rate term of the E2 angle. */
private static final double E02_DOT = -0.1059842;
/** Sine coefficient of the E2 angle. */
private static final double E02_SIN = -0.1204;
/** Cosine coefficient of the E2 angle. */
private static final double E02_COS = 0.0239;
/** Sine coefficient of the E2 angle, for the prime meridian. */
private static final double E02_W_SIN = 0.1208;
/** Constant term of the E3 angle. */
private static final double E03_0 = 260.008;
/** Rate term of the E3 angle. */
private static final double E03_DOT = 13.0120009;
/** Sine coefficient of the E3 angle. */
private static final double E03_SIN = 0.0700;
/** Cosine coefficient of the E3 angle. */
private static final double E03_COS = -0.0278;
/** Sine coefficient of the E3 angle, for the prime meridian. */
private static final double E03_W_SIN = -0.0642;
/** Constant term of the E4 angle. */
private static final double E04_0 = 176.625;
/** Rate term of the E4 angle. */
private static final double E04_DOT = 13.3407154;
/** Sine coefficient of the E4 angle. */
private static final double E04_SIN = -0.0172;
/** Cosine coefficient of the E4 angle. */
private static final double E04_COS = 0.0068;
/** Sine coefficient of the E4 angle, for the prime meridian. */
private static final double E04_W_SIN = 0.0158;
/** Constant term of the E5 angle. */
private static final double E05_0 = 357.529;
/** Rate term of the E5 angle. */
private static final double E05_DOT = 0.9856003;
/** Sine coefficient of the E5 angle, for the prime meridian. */
private static final double E05_W_SIN = 0.0252;
/** Constant term of the E6 angle. */
private static final double E06_0 = 311.589;
/** Rate term of the E6 angle. */
private static final double E06_DOT = 26.4057084;
/** Sine coefficient of the E6 angle. */
private static final double E06_SIN = 0.0072;
/** Cosine coefficient of the E6 angle. */
private static final double E06_COS = -0.0029;
/** Sine coefficient of the E6 angle, for the prime meridian. */
private static final double E06_W_SIN = -0.0066;
/** Constant term of the E7 angle. */
private static final double E07_0 = 134.963;
/** Rate term of the E7 angle. */
private static final double E07_DOT = 13.0649930;
/** Cosine coefficient of the E7 angle. */
private static final double E07_COS = 0.0009;
/** Sine coefficient of the E7 angle, for the prime meridian. */
private static final double E07_W_SIN = -0.0047;
/** Constant term of the E8 angle. */
private static final double E08_0 = 276.617;
/** Rate term of the E8 angle. */
private static final double E08_DOT = 0.3287146;
/** Sine coefficient of the E8 angle, for the prime meridian. */
private static final double E08_W_SIN = -0.0046;
/** Constant term of the E9 angle. */
private static final double E09_0 = 34.226;
/** Rate term of the E9 angle. */
private static final double E09_DOT = 1.7484877;
/** Sine coefficient of the E9 angle, for the prime meridian. */
private static final double E09_W_SIN = 0.0028;
/** Constant term of the E10 angle. */
private static final double E10_0 = 15.134;
/** Rate term of the E10 angle. */
private static final double E10_DOT = -0.1589763;
/** Sine coefficient of the E10 angle. */
private static final double E10_SIN = -0.0052;
/** Cosine coefficient of the E10 angle. */
private static final double E10_COS = 0.0008;
/** Sine coefficient of the E10 angle, for the prime meridian. */
private static final double E10_W_SIN = 0.0052;
/** Constant term of the E11 angle. */
private static final double E11_0 = 119.743;
/** Rate term of the E11 angle. */
private static final double E11_DOT = 0.0036096;
/** Sine coefficient of the E11 angle, for the prime meridian. */
private static final double E11_W_SIN = 0.0040;
/** Constant term of the E12 angle. */
private static final double E12_0 = 239.961;
/** Rate term of the E12 angle. */
private static final double E12_DOT = 0.1643573;
/** Sine coefficient of the E12 angle, for the prime meridian. */
private static final double E12_W_SIN = 0.0019;
/** Constant term of the E13 angle. */
private static final double E13_0 = 25.053;
/** Rate term of the E13 angle. */
private static final double E13_DOT = 12.9590088;
/** Sine coefficient of the E13 angle. */
private static final double E13_SIN = 0.0043;
/** Cosine coefficient of the E13 angle. */
private static final double E13_COS = -0.0009;
/** Sine coefficient of the E13 angle, for the prime meridian. */
private static final double E13_W_SIN = -0.0044;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Moon(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
final double d = d(date);
final double t = t(date);
final SinCos scE01 = FastMath.sinCos(FastMath.toRadians(d * E01_DOT + E01_0));
final SinCos scE02 = FastMath.sinCos(FastMath.toRadians(d * E02_DOT + E02_0));
final SinCos scE03 = FastMath.sinCos(FastMath.toRadians(d * E03_DOT + E03_0));
final SinCos scE04 = FastMath.sinCos(FastMath.toRadians(d * E04_DOT + E04_0));
final SinCos scE06 = FastMath.sinCos(FastMath.toRadians(d * E06_DOT + E06_0));
final SinCos scE10 = FastMath.sinCos(FastMath.toRadians(d * E10_DOT + E10_0));
final SinCos scE13 = FastMath.sinCos(FastMath.toRadians(d * E13_DOT + E13_0));
return new Vector3D(FastMath.toRadians(t * ALPHA_DOT + ALPHA_0 +
scE01.sin() * E01_SIN +
scE02.sin() * E02_SIN +
scE03.sin() * E03_SIN +
scE04.sin() * E04_SIN +
scE06.sin() * E06_SIN +
scE10.sin() * E10_SIN +
scE13.sin() * E13_SIN),
FastMath.toRadians(t * DELTA_DOT + DELTA_0 +
scE01.cos() * E01_COS +
scE02.cos() * E02_COS +
scE03.cos() * E03_COS +
scE04.cos() * E04_COS +
scE06.cos() * E06_COS +
FastMath.cos(FastMath.toRadians(d * E07_DOT + E07_0)) * E07_COS + // only the cosine is needed
scE10.cos() * E10_COS +
scE13.cos() * E13_COS));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
final T d = d(date);
final T t = t(date);
final FieldSinCos<T> scE01 = FastMath.sinCos(FastMath.toRadians(d.multiply(E01_DOT).add(E01_0)));
final FieldSinCos<T> scE02 = FastMath.sinCos(FastMath.toRadians(d.multiply(E02_DOT).add(E02_0)));
final FieldSinCos<T> scE03 = FastMath.sinCos(FastMath.toRadians(d.multiply(E03_DOT).add(E03_0)));
final FieldSinCos<T> scE04 = FastMath.sinCos(FastMath.toRadians(d.multiply(E04_DOT).add(E04_0)));
final FieldSinCos<T> scE06 = FastMath.sinCos(FastMath.toRadians(d.multiply(E06_DOT).add(E06_0)));
final FieldSinCos<T> scE10 = FastMath.sinCos(FastMath.toRadians(d.multiply(E10_DOT).add(E10_0)));
final FieldSinCos<T> scE13 = FastMath.sinCos(FastMath.toRadians(d.multiply(E13_DOT).add(E13_0)));
return new FieldVector3D<>(FastMath.toRadians(t.multiply(ALPHA_DOT).add(ALPHA_0).
add(scE01.sin().multiply(E01_SIN)).
add(scE02.sin().multiply(E02_SIN)).
add(scE03.sin().multiply(E03_SIN)).
add(scE04.sin().multiply(E04_SIN)).
add(scE06.sin().multiply(E06_SIN)).
add(scE10.sin().multiply(E10_SIN)).
add(scE13.sin().multiply(E13_SIN))),
FastMath.toRadians(t.multiply(DELTA_DOT).add(DELTA_0).
add(scE01.cos().multiply(E01_COS)).
add(scE02.cos().multiply(E02_COS)).
add(scE03.cos().multiply(E03_COS)).
add(scE04.cos().multiply(E04_COS)).
add(scE06.cos().multiply(E06_COS)).
add(FastMath.toRadians(d.multiply(E07_DOT).add(E07_0)).cos().multiply(E07_COS)).// only the cosine is needed
add(scE10.cos().multiply(E10_COS)).
add(scE13.cos().multiply(E13_COS))));
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
final double d = d(date);
return FastMath.toRadians(d * (d * W_DOT_DOT + W_DOT) + W_0 +
FastMath.sin(FastMath.toRadians(d * E01_DOT + E01_0)) * E01_W_SIN +
FastMath.sin(FastMath.toRadians(d * E02_DOT + E02_0)) * E02_W_SIN +
FastMath.sin(FastMath.toRadians(d * E03_DOT + E03_0)) * E03_W_SIN +
FastMath.sin(FastMath.toRadians(d * E04_DOT + E04_0)) * E04_W_SIN +
FastMath.sin(FastMath.toRadians(d * E05_DOT + E05_0)) * E05_W_SIN +
FastMath.sin(FastMath.toRadians(d * E06_DOT + E06_0)) * E06_W_SIN +
FastMath.sin(FastMath.toRadians(d * E07_DOT + E07_0)) * E07_W_SIN +
FastMath.sin(FastMath.toRadians(d * E08_DOT + E08_0)) * E08_W_SIN +
FastMath.sin(FastMath.toRadians(d * E09_DOT + E09_0)) * E09_W_SIN +
FastMath.sin(FastMath.toRadians(d * E10_DOT + E10_0)) * E10_W_SIN +
FastMath.sin(FastMath.toRadians(d * E11_DOT + E11_0)) * E11_W_SIN +
FastMath.sin(FastMath.toRadians(d * E12_DOT + E12_0)) * E12_W_SIN +
FastMath.sin(FastMath.toRadians(d * E13_DOT + E13_0)) * E13_W_SIN);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
final T d = d(date);
return FastMath.toRadians(d.multiply(d.multiply(W_DOT_DOT).add(W_DOT)).add(W_0).
add(FastMath.toRadians(d.multiply(E01_DOT).add(E01_0)).sin().multiply(E01_W_SIN)).
add(FastMath.toRadians(d.multiply(E02_DOT).add(E02_0)).sin().multiply(E02_W_SIN)).
add(FastMath.toRadians(d.multiply(E03_DOT).add(E03_0)).sin().multiply(E03_W_SIN)).
add(FastMath.toRadians(d.multiply(E04_DOT).add(E04_0)).sin().multiply(E04_W_SIN)).
add(FastMath.toRadians(d.multiply(E05_DOT).add(E05_0)).sin().multiply(E05_W_SIN)).
add(FastMath.toRadians(d.multiply(E06_DOT).add(E06_0)).sin().multiply(E06_W_SIN)).
add(FastMath.toRadians(d.multiply(E07_DOT).add(E07_0)).sin().multiply(E07_W_SIN)).
add(FastMath.toRadians(d.multiply(E08_DOT).add(E08_0)).sin().multiply(E08_W_SIN)).
add(FastMath.toRadians(d.multiply(E09_DOT).add(E09_0)).sin().multiply(E09_W_SIN)).
add(FastMath.toRadians(d.multiply(E10_DOT).add(E10_0)).sin().multiply(E10_W_SIN)).
add(FastMath.toRadians(d.multiply(E11_DOT).add(E11_0)).sin().multiply(E11_W_SIN)).
add(FastMath.toRadians(d.multiply(E12_DOT).add(E12_0)).sin().multiply(E12_W_SIN)).
add(FastMath.toRadians(d.multiply(E13_DOT).add(E13_0)).sin().multiply(E13_W_SIN)));
}
}
/** IAU pole and prime meridian model for Mars. */
private static class Mars extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the right ascension of the pole. */
private static final double ALPHA_0 = 317.68143;
/** Rate term of the right ascension of the pole. */
private static final double ALPHA_DOT = -0.1061;
/** Constant term of the declination of the pole. */
private static final double DELTA_0 = 52.88650;
/** Rate term of the declination of the pole. */
private static final double DELTA_DOT = -0.0609;
/** Constant term of the prime meridian. */
private static final double W_0 = 176.630;
/** Rate term of the prime meridian. */
private static final double W_DOT = 350.89198226;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Mars(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
final double t = t(date);
return new Vector3D(FastMath.toRadians(t * ALPHA_DOT + ALPHA_0),
FastMath.toRadians(t * DELTA_DOT + DELTA_0));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
final T t = t(date);
return new FieldVector3D<>(FastMath.toRadians(t.multiply(ALPHA_DOT).add(ALPHA_0)),
FastMath.toRadians(t.multiply(DELTA_DOT).add(DELTA_0)));
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0));
}
}
/** IAU pole and prime meridian model for Jupiter. */
private static class Jupiter extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the right ascension of the pole. */
private static final double ALPHA_0 = 268.056595;
/** Rate term of the right ascension of the pole. */
private static final double ALPHA_DOT = -0.006499;
/** Constant term of the declination of the pole. */
private static final double DELTA_0 = 64.495303;
/** Rate term of the declination of the pole. */
private static final double DELTA_DOT = 0.002413;
/** Constant term of the ja angle. */
private static final double JA_0 = 99.360714;
/** Rate term of the ja angle. */
private static final double JA_DOT = 4850.4046;
/** Sine coefficient of the ja angle. */
private static final double JA_SIN = 0.000117;
/** Cosine coefficient of the ja angle. */
private static final double JA_COS = 0.000050;
/** Constant term of the jb angle. */
private static final double JB_0 = 175.895369;
/** Rate term of the jb angle. */
private static final double JB_DOT = 1191.9605;
/** Sine coefficient of the jb angle. */
private static final double JB_SIN = 0.000938;
/** Cosine coefficient of the jb angle. */
private static final double JB_COS = 0.000404;
/** Constant term of the jc angle. */
private static final double JC_0 = 300.323162;
/** Rate term of the jc angle. */
private static final double JC_DOT = 262.5475;
/** Sine coefficient of the jc angle. */
private static final double JC_SIN = 0.001432;
/** Cosine coefficient of the jc angle. */
private static final double JC_COS = 0.000617;
/** Constant term of the jd angle. */
private static final double JD_0 = 114.012305;
/** Rate term of the jd angle. */
private static final double JD_DOT = 6070.2476;
/** Sine coefficient of the jd angle. */
private static final double JD_SIN = 0.000030;
/** Cosine coefficient of the jd angle. */
private static final double JD_COS = -0.000013;
/** Constant term of the je angle. */
private static final double JE_0 = 49.511251;
/** Rate term of the je angle. */
private static final double JE_DOT = 64.3000;
/** Sine coefficient of the je angle. */
private static final double JE_SIN = 0.002150;
/** Cosine coefficient of the je angle. */
private static final double JE_COS = 0.000926;
/** Constant term of the prime meridian. */
private static final double W_0 = 284.95;
/** Rate term of the prime meridian. */
private static final double W_DOT = 870.5360000;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Jupiter(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
final double t = t(date);
final double ja = FastMath.toRadians(t * JA_DOT + JA_0);
final double jb = FastMath.toRadians(t * JB_DOT + JB_0);
final double jc = FastMath.toRadians(t * JC_DOT + JC_0);
final double jd = FastMath.toRadians(t * JD_DOT + JD_0);
final double je = FastMath.toRadians(t * JE_DOT + JE_0);
final SinCos scJa = FastMath.sinCos(ja);
final SinCos scJb = FastMath.sinCos(jb);
final SinCos scJc = FastMath.sinCos(jc);
final SinCos scJd = FastMath.sinCos(jd);
final SinCos scJe = FastMath.sinCos(je);
return new Vector3D(FastMath.toRadians(t * ALPHA_DOT + ALPHA_0 +
scJa.sin() * JA_SIN +
scJb.sin() * JB_SIN +
scJc.sin() * JC_SIN +
scJd.sin() * JD_SIN +
scJe.sin() * JE_SIN),
FastMath.toRadians(t * DELTA_DOT + DELTA_0 +
scJa.cos() * JA_COS +
scJb.cos() * JB_COS +
scJc.cos() * JC_COS +
scJd.cos() * JD_COS +
scJe.cos() * JE_COS));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
final T t = t(date);
final T ja = FastMath.toRadians(t.multiply(JA_DOT).add(JA_0));
final T jb = FastMath.toRadians(t.multiply(JB_DOT).add(JB_0));
final T jc = FastMath.toRadians(t.multiply(JC_DOT).add(JC_0));
final T jd = FastMath.toRadians(t.multiply(JD_DOT).add(JD_0));
final T je = FastMath.toRadians(t.multiply(JE_DOT).add(JE_0));
final FieldSinCos<T> scJa = FastMath.sinCos(ja);
final FieldSinCos<T> scJb = FastMath.sinCos(jb);
final FieldSinCos<T> scJc = FastMath.sinCos(jc);
final FieldSinCos<T> scJd = FastMath.sinCos(jd);
final FieldSinCos<T> scJe = FastMath.sinCos(je);
return new FieldVector3D<>(FastMath.toRadians(t.multiply(ALPHA_DOT).add(ALPHA_0).
add(scJa.sin().multiply(JA_SIN)).
add(scJb.sin().multiply(JB_SIN)).
add(scJc.sin().multiply(JC_SIN)).
add(scJd.sin().multiply(JD_SIN)).
add(scJe.sin().multiply(JE_SIN))),
FastMath.toRadians(t.multiply(DELTA_DOT).add(DELTA_0).
add(scJa.cos().multiply(JA_COS)).
add(scJb.cos().multiply(JB_COS)).
add(scJc.cos().multiply(JC_COS)).
add(scJd.cos().multiply(JD_COS)).
add(scJe.cos().multiply(JE_COS))));
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0));
}
}
/** IAU pole and prime meridian model for Saturn. */
private static class Saturn extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the right ascension of the pole. */
private static final double ALPHA_0 = 40.589;
/** Rate term of the right ascension of the pole. */
private static final double ALPHA_DOT = -0.036;
/** Constant term of the declination of the pole. */
private static final double DELTA_0 = 83.537;
/** Rate term of the declination of the pole. */
private static final double DELTA_DOT = -0.004;
/** Constant term of the prime meridian. */
private static final double W_0 = 38.90;
/** Rate term of the prime meridian. */
private static final double W_DOT = 810.7939024;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Saturn(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
final double t = t(date);
return new Vector3D(FastMath.toRadians(t * ALPHA_DOT + ALPHA_0),
FastMath.toRadians(t * DELTA_DOT + DELTA_0));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
final T t = t(date);
return new FieldVector3D<>(FastMath.toRadians(t.multiply(ALPHA_DOT).add(ALPHA_0)),
FastMath.toRadians(t.multiply(DELTA_DOT).add(DELTA_0)));
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0));
}
}
/** IAU pole and prime meridian model for Uranus. */
private static class Uranus extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the prime meridian. */
private static final double W_0 = 203.81;
/** Rate term of the prime meridian. */
private static final double W_DOT = -501.1600928;
/** Fixed pole. */
private final Vector3D pole = new Vector3D(FastMath.toRadians(257.311),
FastMath.toRadians(-15.175));
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Uranus(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
return pole;
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
return new FieldVector3D<>(date.getField(), pole);
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0));
}
}
/** IAU pole and prime meridian model for Neptune. */
private static class Neptune extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the right ascension of the pole. */
private static final double ALPHA_0 = 299.36;
/** Sine term of the right ascension of the pole. */
private static final double ALPHA_SIN = 0.70;
/** Constant term of the declination of the pole. */
private static final double DELTA_0 = 43.46;
/** Cosine term of the declination of the pole. */
private static final double DELTA_COS = -0.51;
/** Constant term of the prime meridian. */
private static final double W_0 = 253.18;
/** Rate term of the prime meridian. */
private static final double W_DOT = 536.3128492;
/** Sine term of the prime meridian. */
private static final double W_SIN = -0.48;
/** Constant term of the N angle. */
private static final double N_0 = 357.85;
/** Rate term of the M1 angle. */
private static final double N_DOT = 52.316;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Neptune(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
final double n = FastMath.toRadians(t(date) * N_DOT + N_0);
final SinCos sc = FastMath.sinCos(n);
return new Vector3D(FastMath.toRadians(sc.sin() * ALPHA_SIN + ALPHA_0),
FastMath.toRadians(sc.cos() * DELTA_COS + DELTA_0));
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
final T n = FastMath.toRadians(t(date).multiply(N_DOT).add(N_0));
final FieldSinCos<T> sc = FastMath.sinCos(n);
return new FieldVector3D<>(FastMath.toRadians(sc.sin().multiply(ALPHA_SIN).add(ALPHA_0)),
FastMath.toRadians(sc.cos().multiply(DELTA_COS).add(DELTA_0)));
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
final double n = FastMath.toRadians(t(date) * N_DOT + N_0);
return FastMath.toRadians(d(date) * W_DOT + FastMath.sin(n) * W_SIN + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
final T n = FastMath.toRadians(t(date).multiply(N_DOT).add(N_0));
return FastMath.toRadians(d(date).multiply(W_DOT).add(n.sin().multiply(W_SIN)).add(W_0));
}
}
/** IAU pole and prime meridian model for Pluto. */
private static class Pluto extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/** Constant term of the prime meridian. */
private static final double W_0 = 302.695;
/** Rate term of the prime meridian. */
private static final double W_DOT = 56.3625225;
/** Fixed pole. */
private final Vector3D pole = new Vector3D(FastMath.toRadians(132.993),
FastMath.toRadians(-6.163));
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
Pluto(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
return pole;
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
return new FieldVector3D<>(date.getField(), pole);
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return FastMath.toRadians(d(date) * W_DOT + W_0);
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return FastMath.toRadians(d(date).multiply(W_DOT).add(W_0));
}
}
/** Default IAUPole implementation for barycenters.
* <p>
* This implementation defines directions such that the inertially oriented and body
* oriented frames are identical and aligned with GCRF. It is used for example
* to define the ICRF.
* </p>
*/
private static class GcrfAligned extends PredefinedIAUPoles {
/** Serializable UID. */
private static final long serialVersionUID = 20200130L;
/**
* Simple constructor.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
*/
GcrfAligned(final TimeScales timeScales) {
super(timeScales);
}
/** {@inheritDoc} */
public Vector3D getPole(final AbsoluteDate date) {
return Vector3D.PLUS_K;
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> FieldVector3D<T> getPole(final FieldAbsoluteDate<T> date) {
return FieldVector3D.getPlusK(date.getField());
}
/** {@inheritDoc} */
@Override
public Vector3D getNode(final AbsoluteDate date) {
return Vector3D.PLUS_I;
}
/** {@inheritDoc} */
@Override
public <T extends RealFieldElement<T>> FieldVector3D<T> getNode(final FieldAbsoluteDate<T> date) {
return FieldVector3D.getPlusI(date.getField());
}
/** {@inheritDoc} */
public double getPrimeMeridianAngle(final AbsoluteDate date) {
return 0;
}
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> T getPrimeMeridianAngle(final FieldAbsoluteDate<T> date) {
return date.getField().getZero();
}
}
/** Get a predefined IAU pole.
* @param body body identifier
* @param timeScales to use when computing the pole, including TDB and J2000.0.
* @return predefined IAU pole
*/
public static PredefinedIAUPoles getIAUPole(final EphemerisType body,
final TimeScales timeScales) {
switch(body) {
case SUN :
return new Sun(timeScales);
case MERCURY :
return new Mercury(timeScales);
case VENUS :
return new Venus(timeScales);
case EARTH :
return new Earth(timeScales);
case MOON :
return new Moon(timeScales);
case MARS :
return new Mars(timeScales);
case JUPITER :
return new Jupiter(timeScales);
case SATURN :
return new Saturn(timeScales);
case URANUS :
return new Uranus(timeScales);
case NEPTUNE :
return new Neptune(timeScales);
case PLUTO :
return new Pluto(timeScales);
default :
return new GcrfAligned(timeScales);
}
}
/**
* List of predefined IAU poles.
*
* @param timeScales to use when computing the pole, including TDB and J2000.0.
* @return the poles.
*/
static List<PredefinedIAUPoles> values(final TimeScales timeScales) {
final List<PredefinedIAUPoles> values = new ArrayList<>(12);
values.add(new Sun(timeScales));
values.add(new Mercury(timeScales));
values.add(new Venus(timeScales));
values.add(new Earth(timeScales));
values.add(new Moon(timeScales));
values.add(new Mars(timeScales));
values.add(new Jupiter(timeScales));
values.add(new Saturn(timeScales));
values.add(new Uranus(timeScales));
values.add(new Neptune(timeScales));
values.add(new Pluto(timeScales));
values.add(new GcrfAligned(timeScales));
return values;
}
/** Compute the interval in julian centuries from standard epoch.
* @param date date
* @return interval between date and standard epoch in julian centuries
*/
protected double t(final AbsoluteDate date) {
return date.offsetFrom(timeScales.getJ2000Epoch(), timeScales.getTDB()) /
Constants.JULIAN_CENTURY;
}
/** Compute the interval in julian centuries from standard epoch.
* @param date date
* @param <T> type of the filed elements
* @return interval between date and standard epoch in julian centuries
*/
protected <T extends RealFieldElement<T>> T t(final FieldAbsoluteDate<T> date) {
final FieldAbsoluteDate<T> j2000Epoch =
new FieldAbsoluteDate<>(date.getField(), timeScales.getJ2000Epoch());
return date.offsetFrom(j2000Epoch, timeScales.getTDB()).divide(Constants.JULIAN_CENTURY);
}
/** Compute the interval in julian days from standard epoch.
* @param date date
* @return interval between date and standard epoch in julian days
*/
protected double d(final AbsoluteDate date) {
return date.offsetFrom(timeScales.getJ2000Epoch(), timeScales.getTDB()) /
Constants.JULIAN_DAY;
}
/** Compute the interval in julian days from standard epoch.
* @param date date
* @param <T> type of the filed elements
* @return interval between date and standard epoch in julian days
*/
protected <T extends RealFieldElement<T>> T d(final FieldAbsoluteDate<T> date) {
final FieldAbsoluteDate<T> j2000Epoch =
new FieldAbsoluteDate<>(date.getField(), timeScales.getJ2000Epoch());
return date.offsetFrom(j2000Epoch, timeScales.getTDB()).divide(Constants.JULIAN_DAY);
}
}