FieldAbstractIntegratedPropagator.java
/* Copyright 2002-2020 CS Group
* Licensed to CS Group (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.integration;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.ode.FieldDenseOutputModel;
import org.hipparchus.ode.FieldEquationsMapper;
import org.hipparchus.ode.FieldExpandableODE;
import org.hipparchus.ode.FieldODEIntegrator;
import org.hipparchus.ode.FieldODEState;
import org.hipparchus.ode.FieldODEStateAndDerivative;
import org.hipparchus.ode.FieldOrdinaryDifferentialEquation;
import org.hipparchus.ode.FieldSecondaryODE;
import org.hipparchus.ode.events.Action;
import org.hipparchus.ode.events.FieldODEEventHandler;
import org.hipparchus.ode.sampling.FieldODEStateInterpolator;
import org.hipparchus.ode.sampling.FieldODEStepHandler;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.Precision;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitIllegalStateException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.Frame;
import org.orekit.orbits.OrbitType;
import org.orekit.orbits.PositionAngle;
import org.orekit.propagation.FieldAbstractPropagator;
import org.orekit.propagation.FieldBoundedPropagator;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.PropagationType;
import org.orekit.propagation.events.FieldEventDetector;
import org.orekit.propagation.sampling.FieldOrekitStepHandler;
import org.orekit.propagation.sampling.FieldOrekitStepInterpolator;
import org.orekit.time.FieldAbsoluteDate;
/** Common handling of {@link org.orekit.propagation.FieldPropagator FieldPropagator}
* methods for both numerical and semi-analytical propagators.
* @author Luc Maisonobe
*/
public abstract class FieldAbstractIntegratedPropagator<T extends RealFieldElement<T>> extends FieldAbstractPropagator<T> {
/** Event detectors not related to force models. */
private final List<FieldEventDetector<T>> detectors;
/** Integrator selected by the user for the orbital extrapolation process. */
private final FieldODEIntegrator<T> integrator;
/** Mode handler. */
private FieldModeHandler<T> modeHandler;
/** Additional equations. */
private List<FieldAdditionalEquations<T>> additionalEquations;
/** Counter for differential equations calls. */
private int calls;
/** Mapper between raw double components and space flight dynamics objects. */
private FieldStateMapper<T> stateMapper;
/** Equations mapper. */
private FieldEquationsMapper<T> equationsMapper;
/** Underlying raw rawInterpolator. */
private FieldODEStateInterpolator<T> mathInterpolator;
/** Flag for resetting the state at end of propagation. */
private boolean resetAtEnd;
/** Type of orbit to output (mean or osculating) <br/>
* <p>
* This is used only in the case of semianalitical propagators where there is a clear separation between
* mean and short periodic elements. It is ignored by the Numerical propagator.
* </p>
*/
private PropagationType propagationType;
/** Build a new instance.
* @param integrator numerical integrator to use for propagation.
* @param propagationType type of orbit to output (mean or osculating).
* @param field Field used by default
*/
protected FieldAbstractIntegratedPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator, final PropagationType propagationType) {
super(field);
detectors = new ArrayList<FieldEventDetector<T>>();
additionalEquations = new ArrayList<FieldAdditionalEquations<T>>();
this.integrator = integrator;
this.propagationType = propagationType;
this.resetAtEnd = true;
}
/** Allow/disallow resetting the initial state at end of propagation.
* <p>
* By default, at the end of the propagation, the propagator resets the initial state
* to the final state, thus allowing a new propagation to be started from there without
* recomputing the part already performed. Calling this method with {@code resetAtEnd} set
* to false changes prevents such reset.
* </p>
* @param resetAtEnd if true, at end of each propagation, the {@link
* #getInitialState() initial state} will be reset to the final state of
* the propagation, otherwise the initial state will be preserved
* @since 9.0
*/
public void setResetAtEnd(final boolean resetAtEnd) {
this.resetAtEnd = resetAtEnd;
}
/** Initialize the mapper.
* @param field Field used by default
*/
protected void initMapper(final Field<T> field) {
final T zero = field.getZero();
stateMapper = createMapper(null, zero.add(Double.NaN), null, null, null, null);
}
/** {@inheritDoc} */
public void setAttitudeProvider(final AttitudeProvider attitudeProvider) {
super.setAttitudeProvider(attitudeProvider);
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
attitudeProvider, stateMapper.getFrame());
}
/** Set propagation orbit type.
* @param orbitType orbit type to use for propagation
*/
protected void setOrbitType(final OrbitType orbitType) {
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
orbitType, stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get propagation parameter type.
* @return orbit type used for propagation
*/
protected OrbitType getOrbitType() {
return stateMapper.getOrbitType();
}
/** Check if only the mean elements should be used in a semianalitical propagation.
* @return {@link PropagationType MEAN} if only mean elements have to be used or
* {@link PropagationType OSCULATING} if osculating elements have to be also used.
*/
protected PropagationType isMeanOrbit() {
return propagationType;
}
/** Set position angle type.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param positionAngleType angle type to use for propagation
*/
protected void setPositionAngleType(final PositionAngle positionAngleType) {
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), positionAngleType,
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get propagation parameter type.
* @return angle type to use for propagation
*/
protected PositionAngle getPositionAngleType() {
return stateMapper.getPositionAngleType();
}
/** Set the central attraction coefficient μ.
* @param mu central attraction coefficient (m³/s²)
*/
public void setMu(final T mu) {
stateMapper = createMapper(stateMapper.getReferenceDate(), mu,
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get the central attraction coefficient μ.
* @return mu central attraction coefficient (m³/s²)
* @see #setMu(RealFieldElement)
*/
public T getMu() {
return stateMapper.getMu();
}
/** Get the number of calls to the differential equations computation method.
* <p>The number of calls is reset each time the {@link #propagate(FieldAbsoluteDate)}
* method is called.</p>
* @return number of calls to the differential equations computation method
*/
public int getCalls() {
return calls;
}
/** {@inheritDoc} */
@Override
public boolean isAdditionalStateManaged(final String name) {
// first look at already integrated states
if (super.isAdditionalStateManaged(name)) {
return true;
}
// then look at states we integrate ourselves
for (final FieldAdditionalEquations<T> equation : additionalEquations) {
if (equation.getName().equals(name)) {
return true;
}
}
return false;
}
/** {@inheritDoc} */
@Override
public String[] getManagedAdditionalStates() {
final String[] alreadyIntegrated = super.getManagedAdditionalStates();
final String[] managed = new String[alreadyIntegrated.length + additionalEquations.size()];
System.arraycopy(alreadyIntegrated, 0, managed, 0, alreadyIntegrated.length);
for (int i = 0; i < additionalEquations.size(); ++i) {
managed[i + alreadyIntegrated.length] = additionalEquations.get(i).getName();
}
return managed;
}
/** Add a set of user-specified equations to be integrated along with the orbit propagation.
* @param additional additional equations
*/
public void addAdditionalEquations(final FieldAdditionalEquations<T> additional) {
// check if the name is already used
if (isAdditionalStateManaged(additional.getName())) {
// this set of equations is already registered, complain
throw new OrekitException(OrekitMessages.ADDITIONAL_STATE_NAME_ALREADY_IN_USE,
additional.getName());
}
// this is really a new set of equations, add it
additionalEquations.add(additional);
}
/** {@inheritDoc} */
public <D extends FieldEventDetector<T>> void addEventDetector(final D detector) {
detectors.add(detector);
}
/** {@inheritDoc} */
public Collection<FieldEventDetector<T>> getEventsDetectors() {
return Collections.unmodifiableCollection(detectors);
}
/** {@inheritDoc} */
public void clearEventsDetectors() {
detectors.clear();
}
/** Set up all user defined event detectors.
*/
protected void setUpUserEventDetectors() {
for (final FieldEventDetector<T> detector : detectors) {
setUpEventDetector(integrator, detector);
}
}
/** Wrap an Orekit event detector and register it to the integrator.
* @param integ integrator into which event detector should be registered
* @param detector event detector to wrap
*/
protected void setUpEventDetector(final FieldODEIntegrator<T> integ, final FieldEventDetector<T> detector) {
integ.addEventHandler(new FieldAdaptedEventDetector(detector),
detector.getMaxCheckInterval().getReal(),
detector.getThreshold().getReal(),
detector.getMaxIterationCount());
}
/** {@inheritDoc}
* <p>Note that this method has the side effect of replacing the step handlers
* of the underlying integrator set up in the {@link
* #FieldAbstractIntegratedPropagator(Field, FieldODEIntegrator, PropagationType) constructor}. So if a specific
* step handler is needed, it should be added after this method has been callled.</p>
*/
public void setSlaveMode() {
super.setSlaveMode();
if (integrator != null) {
integrator.clearStepHandlers();
}
modeHandler = null;
}
/** {@inheritDoc}
* <p>Note that this method has the side effect of replacing the step handlers
* of the underlying integrator set up in the {@link
* #FieldAbstractIntegratedPropagator(Field, FieldODEIntegrator, PropagationType) constructor}. So if a specific
* step handler is needed, it should be added after this method has been called.</p>
*/
public void setMasterMode(final FieldOrekitStepHandler<T> handler) {
super.setMasterMode(handler);
integrator.clearStepHandlers();
final FieldAdaptedStepHandler wrapped = new FieldAdaptedStepHandler(handler);
integrator.addStepHandler(wrapped);
modeHandler = wrapped;
}
/** {@inheritDoc}
* <p>Note that this method has the side effect of replacing the step handlers
* of the underlying integrator set up in the {@link
* #FieldAbstractIntegratedPropagator(Field, FieldODEIntegrator, PropagationType) constructor}. So if a specific
* step handler is needed, it should be added after this method has been called.</p>
*/
public void setEphemerisMode() {
super.setEphemerisMode();
integrator.clearStepHandlers();
final FieldEphemerisModeHandler ephemeris = new FieldEphemerisModeHandler();
modeHandler = ephemeris;
integrator.addStepHandler(ephemeris);
}
/** {@inheritDoc} */
public FieldBoundedPropagator<T> getGeneratedEphemeris()
throws IllegalStateException {
if (getMode() != EPHEMERIS_GENERATION_MODE) {
throw new OrekitIllegalStateException(OrekitMessages.PROPAGATOR_NOT_IN_EPHEMERIS_GENERATION_MODE);
}
return ((FieldEphemerisModeHandler) modeHandler).getEphemeris();
}
/** Create a mapper between raw double components and spacecraft state.
/** Simple constructor.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param referenceDate reference date
* @param mu central attraction coefficient (m³/s²)
* @param orbitType orbit type to use for mapping
* @param positionAngleType angle type to use for propagation
* @param attitudeProvider attitude provider
* @param frame inertial frame
* @return new mapper
*/
protected abstract FieldStateMapper<T> createMapper(FieldAbsoluteDate<T> referenceDate, T mu,
OrbitType orbitType, PositionAngle positionAngleType,
AttitudeProvider attitudeProvider, Frame frame);
/** Get the differential equations to integrate (for main state only).
* @param integ numerical integrator to use for propagation.
* @return differential equations for main state
*/
protected abstract MainStateEquations<T> getMainStateEquations(FieldODEIntegrator<T> integ);
/** {@inheritDoc} */
public FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> target) {
try {
if (getStartDate() == null) {
if (getInitialState() == null) {
throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
}
setStartDate(getInitialState().getDate());
}
return propagate(getStartDate(), target);
} catch (OrekitException oe) {
// recover a possible embedded OrekitException
for (Throwable t = oe; t != null; t = t.getCause()) {
if (t instanceof OrekitException) {
throw (OrekitException) t;
}
}
throw new OrekitException(oe);
}
}
/** {@inheritDoc} */
public FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> tStart, final FieldAbsoluteDate<T> tEnd) {
try {
if (getInitialState() == null) {
throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
}
if (!tStart.equals(getInitialState().getDate())) {
// if propagation start date is not initial date,
// propagate from initial to start date without event detection
propagate(tStart, false);
}
// propagate from start date to end date with event detection
return propagate(tEnd, true);
} catch (OrekitException oe) {
// recover a possible embedded OrekitException
for (Throwable t = oe; t != null; t = t.getCause()) {
if (t instanceof OrekitException) {
throw (OrekitException) t;
}
}
throw new OrekitException(oe);
}
}
/** Propagation with or without event detection.
* @param tEnd target date to which orbit should be propagated
* @param activateHandlers if true, step and event handlers should be activated
* @return state at end of propagation
*/
protected FieldSpacecraftState<T> propagate(final FieldAbsoluteDate<T> tEnd, final boolean activateHandlers) {
try {
initializePropagation();
if (getInitialState().getDate().equals(tEnd)) {
// don't extrapolate
return getInitialState();
}
// space dynamics view
stateMapper = createMapper(getInitialState().getDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), getInitialState().getFrame());
// set propagation orbit type
//final FieldOrbit<T> initialOrbit = stateMapper.getOrbitType().convertType(getInitialState().getOrbit());
if (Double.isNaN(getMu().getReal())) {
setMu(getInitialState().getMu());
}
if (getInitialState().getMass().getReal() <= 0.0) {
throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE,
getInitialState().getMass());
}
integrator.clearEventHandlers();
// set up events added by user
setUpUserEventDetectors();
// convert space flight dynamics API to math API
final FieldODEState<T> mathInitialState = createInitialState(getInitialIntegrationState());
final FieldExpandableODE<T> mathODE = createODE(integrator, mathInitialState);
equationsMapper = mathODE.getMapper();
mathInterpolator = null;
// initialize mode handler
if (modeHandler != null) {
modeHandler.initialize(activateHandlers, tEnd);
}
// mathematical integration
final FieldODEStateAndDerivative<T> mathFinalState;
beforeIntegration(getInitialState(), tEnd);
mathFinalState = integrator.integrate(mathODE, mathInitialState,
tEnd.durationFrom(getInitialState().getDate()));
afterIntegration();
// get final state
FieldSpacecraftState<T> finalState =
stateMapper.mapArrayToState(stateMapper.mapDoubleToDate(mathFinalState.getTime(), tEnd),
mathFinalState.getPrimaryState(),
mathFinalState.getPrimaryDerivative(),
propagationType);
finalState = updateAdditionalStates(finalState);
for (int i = 0; i < additionalEquations.size(); ++i) {
final T[] secondary = mathFinalState.getSecondaryState(i + 1);
finalState = finalState.addAdditionalState(additionalEquations.get(i).getName(),
secondary);
}
if (resetAtEnd) {
resetInitialState(finalState);
setStartDate(finalState.getDate());
}
return finalState;
} catch (OrekitException pe) {
throw pe;
} catch (MathIllegalArgumentException miae) {
throw OrekitException.unwrap(miae);
} catch (MathIllegalStateException mise) {
throw OrekitException.unwrap(mise);
}
}
/** Get the initial state for integration.
* @return initial state for integration
*/
protected FieldSpacecraftState<T> getInitialIntegrationState() {
return getInitialState();
}
/** Create an initial state.
* @param initialState initial state in flight dynamics world
* @return initial state in mathematics world
*/
private FieldODEState<T> createInitialState(final FieldSpacecraftState<T> initialState) {
// retrieve initial state
final T[] primary = MathArrays.buildArray(initialState.getA().getField(), getBasicDimension());
stateMapper.mapStateToArray(initialState, primary, null);
// secondary part of the ODE
final T[][] secondary = MathArrays.buildArray(initialState.getA().getField(), additionalEquations.size(), -1);
for (int i = 0; i < additionalEquations.size(); ++i) {
final FieldAdditionalEquations<T> additional = additionalEquations.get(i);
final T[] addState = getInitialState().getAdditionalState(additional.getName());
secondary[i] = MathArrays.buildArray(initialState.getA().getField(), addState.length);
for (int j = 0; j < addState.length; j++) {
secondary[i][j] = addState[j];
}
}
return new FieldODEState<>(initialState.getA().getField().getZero(), primary, secondary);
}
/** Create an ODE with all equations.
* @param integ numerical integrator to use for propagation.
* @param mathInitialState initial state
* @return a new ode
*/
private FieldExpandableODE<T> createODE(final FieldODEIntegrator<T> integ,
final FieldODEState<T> mathInitialState) {
final FieldExpandableODE<T> ode =
new FieldExpandableODE<>(new ConvertedMainStateEquations(getMainStateEquations(integ)));
// secondary part of the ODE
for (int i = 0; i < additionalEquations.size(); ++i) {
final FieldAdditionalEquations<T> additional = additionalEquations.get(i);
final FieldSecondaryODE<T> secondary =
new ConvertedSecondaryStateEquations(additional,
mathInitialState.getSecondaryStateDimension(i + 1));
ode.addSecondaryEquations(secondary);
}
return ode;
}
/** Method called just before integration.
* <p>
* The default implementation does nothing, it may be specialized in subclasses.
* </p>
* @param initialState initial state
* @param tEnd target date at which state should be propagated
*/
protected void beforeIntegration(final FieldSpacecraftState<T> initialState,
final FieldAbsoluteDate<T> tEnd) {
// do nothing by default
}
/** Method called just after integration.
* <p>
* The default implementation does nothing, it may be specialized in subclasses.
* </p>
*/
protected void afterIntegration() {
// do nothing by default
}
/** Get state vector dimension without additional parameters.
* @return state vector dimension without additional parameters.
*/
public int getBasicDimension() {
return 7;
}
/** Get the integrator used by the propagator.
* @return the integrator.
*/
protected FieldODEIntegrator<T> getIntegrator() {
return integrator;
}
/** Get a complete state with all additional equations.
* @param t current value of the independent <I>time</I> variable
* @param ts array containing the current value of the state vector
* @param tsDot array containing the current value of the state vector derivative
* @return complete state
*/
private FieldSpacecraftState<T> getCompleteState(final T t, final T[] ts, final T[] tsDot) {
// main state
FieldSpacecraftState<T> state = stateMapper.mapArrayToState(t, ts, tsDot, PropagationType.MEAN); //not sure of the mean orbit, should be true
// pre-integrated additional states
state = updateAdditionalStates(state);
// additional states integrated here
if (!additionalEquations.isEmpty()) {
for (int i = 0; i < additionalEquations.size(); ++i) {
state = state.addAdditionalState(additionalEquations.get(i).getName(),
equationsMapper.extractEquationData(i + 1, ts));
}
}
return state;
}
/** Differential equations for the main state (orbit, attitude and mass). */
public interface MainStateEquations<T extends RealFieldElement<T>> {
/**
* Initialize the equations at the start of propagation. This method will be
* called before any calls to {@link #computeDerivatives(FieldSpacecraftState)}.
*
* <p> The default implementation of this method does nothing.
*
* @param initialState initial state information at the start of propagation.
* @param target date of propagation. Not equal to {@code
* initialState.getDate()}.
*/
void init(FieldSpacecraftState<T> initialState, FieldAbsoluteDate<T> target);
/** Compute differential equations for main state.
* @param state current state
* @return derivatives of main state
*/
T[] computeDerivatives(FieldSpacecraftState<T> state);
}
/** Differential equations for the main state (orbit, attitude and mass), with converted API. */
private class ConvertedMainStateEquations implements FieldOrdinaryDifferentialEquation<T> {
/** Main state equations. */
private final MainStateEquations<T> main;
/** Simple constructor.
* @param main main state equations
*/
ConvertedMainStateEquations(final MainStateEquations<T> main) {
this.main = main;
calls = 0;
}
/** {@inheritDoc} */
public int getDimension() {
return getBasicDimension();
}
@Override
public void init(final T t0, final T[] y0, final T finalTime) {
// update space dynamics view
FieldSpacecraftState<T> initialState = stateMapper.mapArrayToState(t0, y0, null, PropagationType.MEAN);
initialState = updateAdditionalStates(initialState);
final FieldAbsoluteDate<T> target = stateMapper.mapDoubleToDate(finalTime);
main.init(initialState, target);
}
/** {@inheritDoc} */
public T[] computeDerivatives(final T t, final T[] y) {
// increment calls counter
++calls;
// update space dynamics view
FieldSpacecraftState<T> currentState = stateMapper.mapArrayToState(t, y, null, PropagationType.MEAN);
currentState = updateAdditionalStates(currentState);
// compute main state differentials
return main.computeDerivatives(currentState);
}
}
/** Differential equations for the secondary state (Jacobians, user variables ...), with converted API. */
private class ConvertedSecondaryStateEquations implements FieldSecondaryODE<T> {
/** Additional equations. */
private final FieldAdditionalEquations<T> equations;
/** Dimension of the additional state. */
private final int dimension;
/** Simple constructor.
* @param equations additional equations
* @param dimension dimension of the additional state
*/
ConvertedSecondaryStateEquations(final FieldAdditionalEquations<T> equations,
final int dimension) {
this.equations = equations;
this.dimension = dimension;
}
/** {@inheritDoc} */
@Override
public int getDimension() {
return dimension;
}
/** {@inheritDoc} */
@Override
public void init(final T t0, final T[] primary0,
final T[] secondary0, final T finalTime) {
// update space dynamics view
FieldSpacecraftState<T> initialState = stateMapper.mapArrayToState(t0, primary0, null, PropagationType.MEAN);
initialState = updateAdditionalStates(initialState);
initialState = initialState.addAdditionalState(equations.getName(), secondary0);
final FieldAbsoluteDate<T> target = stateMapper.mapDoubleToDate(finalTime);
equations.init(initialState, target);
}
/** {@inheritDoc} */
@Override
public T[] computeDerivatives(final T t, final T[] primary,
final T[] primaryDot, final T[] secondary) {
// update space dynamics view
FieldSpacecraftState<T> currentState = stateMapper.mapArrayToState(t, primary, primaryDot, PropagationType.MEAN);
currentState = updateAdditionalStates(currentState);
currentState = currentState.addAdditionalState(equations.getName(), secondary);
// compute additional derivatives
final T[] secondaryDot = MathArrays.buildArray(getField(), secondary.length);
final T[] additionalMainDot =
equations.computeDerivatives(currentState, secondaryDot);
if (additionalMainDot != null) {
// the additional equations have an effect on main equations
for (int i = 0; i < additionalMainDot.length; ++i) {
primaryDot[i] = primaryDot[i].add(additionalMainDot[i]);
}
}
return secondaryDot;
}
}
/** Adapt an {@link org.orekit.propagation.events.FieldEventDetector<T>}
* to Hipparchus {@link org.hipparchus.ode.events.FieldODEEventHandler<T>} interface.
* @param <T> class type for the generic version
* @author Fabien Maussion
*/
private class FieldAdaptedEventDetector implements FieldODEEventHandler<T> {
/** Underlying event detector. */
private final FieldEventDetector<T> detector;
/** Time of the previous call to g. */
private T lastT;
/** Value from the previous call to g. */
private T lastG;
/** Build a wrapped event detector.
* @param detector event detector to wrap
*/
FieldAdaptedEventDetector(final FieldEventDetector<T> detector) {
this.detector = detector;
this.lastT = getField().getZero().add(Double.NaN);
this.lastG = getField().getZero().add(Double.NaN);
}
/** {@inheritDoc} */
public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
detector.init(getCompleteState(s0.getTime(), s0.getCompleteState(), s0.getCompleteDerivative()),
stateMapper.mapDoubleToDate(t));
this.lastT = getField().getZero().add(Double.NaN);
this.lastG = getField().getZero().add(Double.NaN);
}
/** {@inheritDoc} */
public T g(final FieldODEStateAndDerivative<T> s) {
if (!Precision.equals(lastT.getReal(), s.getTime().getReal(), 0)) {
lastT = s.getTime();
lastG = detector.g(getCompleteState(s.getTime(), s.getCompleteState(), s.getCompleteDerivative()));
}
return lastG;
}
/** {@inheritDoc} */
public Action eventOccurred(final FieldODEStateAndDerivative<T> s, final boolean increasing) {
return detector.eventOccurred(
getCompleteState(
s.getTime(),
s.getCompleteState(),
s.getCompleteDerivative()),
increasing);
}
/** {@inheritDoc} */
public FieldODEState<T> resetState(final FieldODEStateAndDerivative<T> s) {
final FieldSpacecraftState<T> oldState = getCompleteState(s.getTime(), s.getCompleteState(), s.getCompleteDerivative());
final FieldSpacecraftState<T> newState = detector.resetState(oldState);
stateChanged(newState);
// main part
final T[] primary = MathArrays.buildArray(getField(), s.getPrimaryStateDimension());
stateMapper.mapStateToArray(newState, primary, null);
// secondary part
final T[][] secondary = MathArrays.buildArray(getField(), additionalEquations.size(), -1);
for (int i = 0; i < additionalEquations.size(); ++i) {
final FieldAdditionalEquations<T> additional = additionalEquations.get(i);
final T[] NState = newState.getAdditionalState(additional.getName());
secondary[i] = MathArrays.buildArray(getField(), NState.length);
for (int j = 0; j < NState.length; j++) {
secondary[i][j] = NState[j];
}
}
return new FieldODEState<>(newState.getDate().durationFrom(getStartDate()),
primary, secondary);
}
}
/** Adapt an {@link org.orekit.propagation.sampling.FieldOrekitStepHandler<T>}
* to Hipparchus {@link FieldODEStepHandler<T>} interface.
* @author Luc Maisonobe
*/
private class FieldAdaptedStepHandler
implements FieldOrekitStepInterpolator<T>, FieldODEStepHandler<T>, FieldModeHandler<T> {
/** Underlying handler. */
private final FieldOrekitStepHandler<T> handler;
/** Flag for handler . */
private boolean activate;
/** Build an instance.
* @param handler underlying handler to wrap
*/
FieldAdaptedStepHandler(final FieldOrekitStepHandler<T> handler) {
this.handler = handler;
}
/** {@inheritDoc} */
public void initialize(final boolean activateHandlers,
final FieldAbsoluteDate<T> targetDate) {
this.activate = activateHandlers;
}
/** {@inheritDoc} */
public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
handler.init(getCompleteState(s0.getTime(), s0.getCompleteState(), s0.getCompleteDerivative()),
stateMapper.mapDoubleToDate(t));
}
/** {@inheritDoc} */
public void handleStep(final FieldODEStateInterpolator<T> interpolator, final boolean isLast) {
mathInterpolator = interpolator;
if (activate) {
handler.handleStep(this, isLast);
}
}
/** {@inheritDoc}} */
@Override
public FieldSpacecraftState<T> getPreviousState() {
return convert(mathInterpolator.getPreviousState());
}
/** {@inheritDoc}} */
@Override
public FieldSpacecraftState<T> getCurrentState() {
return convert(mathInterpolator.getCurrentState());
}
/** {@inheritDoc}} */
@Override
public FieldSpacecraftState<T> getInterpolatedState(final FieldAbsoluteDate<T> date) {
return convert(mathInterpolator.getInterpolatedState(date.durationFrom(getStartDate())));
}
/** Get the interpolated state.
* @param os mathematical state
* @return interpolated state at the current interpolation date
* the date
* @see #getInterpolatedDate()
* @see #setInterpolatedDate(FieldAbsoluteDate<T>)
*/
private FieldSpacecraftState<T> convert(final FieldODEStateAndDerivative<T> os) {
try {
FieldSpacecraftState<T> s =
stateMapper.mapArrayToState(os.getTime(),
os.getPrimaryState(),
os.getPrimaryDerivative(),
propagationType);
s = updateAdditionalStates(s);
for (int i = 0; i < additionalEquations.size(); ++i) {
final T[] secondary = os.getSecondaryState(i + 1);
s = s.addAdditionalState(additionalEquations.get(i).getName(), secondary);
}
return s;
} catch (OrekitException oe) {
throw new OrekitException(oe);
}
}
/** Check is integration direction is forward in date.
* @return true if integration is forward in date
*/
public boolean isForward() {
return mathInterpolator.isForward();
}
}
private class FieldEphemerisModeHandler implements FieldModeHandler<T>, FieldODEStepHandler<T> {
/** Underlying raw mathematical model. */
private FieldDenseOutputModel<T> model;
/** Generated ephemeris. */
private FieldBoundedPropagator<T> ephemeris;
/** Flag for handler . */
private boolean activate;
/** the user supplied end date. Propagation may not end on this date. */
private FieldAbsoluteDate<T> endDate;
/** Creates a new instance of FieldEphemerisModeHandler which must be
* filled by the propagator.
*/
FieldEphemerisModeHandler() {
}
/** {@inheritDoc} */
public void initialize(final boolean activateHandlers,
final FieldAbsoluteDate<T> targetDate) {
this.activate = activateHandlers;
this.model = new FieldDenseOutputModel<>();
this.endDate = targetDate;
// ephemeris will be generated when last step is processed
this.ephemeris = null;
}
/** Get the generated ephemeris.
* @return a new instance of the generated ephemeris
*/
public FieldBoundedPropagator<T> getEphemeris() {
return ephemeris;
}
/** {@inheritDoc} */
public void handleStep(final FieldODEStateInterpolator<T> interpolator, final boolean isLast) {
if (activate) {
model.handleStep(interpolator, isLast);
if (isLast) {
// set up the boundary dates
final T tI = model.getInitialTime();
final T tF = model.getFinalTime();
// tI is almost? always zero
final FieldAbsoluteDate<T> startDate =
stateMapper.mapDoubleToDate(tI);
final FieldAbsoluteDate<T> finalDate =
stateMapper.mapDoubleToDate(tF, this.endDate);
final FieldAbsoluteDate<T> minDate;
final FieldAbsoluteDate<T> maxDate;
if (tF.getReal() < tI.getReal()) {
minDate = finalDate;
maxDate = startDate;
} else {
minDate = startDate;
maxDate = finalDate;
}
// get the initial additional states that are not managed
final Map<String, T[]> unmanaged = new HashMap<String, T[]>();
for (final Map.Entry<String, T[]> initial : getInitialState().getAdditionalStates().entrySet()) {
if (!isAdditionalStateManaged(initial.getKey())) {
// this additional state was in the initial state, but is unknown to the propagator
// we simply copy its initial value as is
unmanaged.put(initial.getKey(), initial.getValue());
}
}
// get the names of additional states managed by differential equations
final String[] names = new String[additionalEquations.size()];
for (int i = 0; i < names.length; ++i) {
names[i] = additionalEquations.get(i).getName();
}
// create the ephemeris
ephemeris = new FieldIntegratedEphemeris<>(startDate, minDate, maxDate,
stateMapper, propagationType, model, unmanaged,
getAdditionalStateProviders(), names);
}
}
}
/** {@inheritDoc} */
public void init(final FieldODEStateAndDerivative<T> s0, final T t) {
model.init(s0, t);
}
}
}