AbstractIntegratedPropagator.java
/* Copyright 2002-2020 CS Group
* Licensed to CS Group (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.integration;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.ode.DenseOutputModel;
import org.hipparchus.ode.EquationsMapper;
import org.hipparchus.ode.ExpandableODE;
import org.hipparchus.ode.ODEIntegrator;
import org.hipparchus.ode.ODEState;
import org.hipparchus.ode.ODEStateAndDerivative;
import org.hipparchus.ode.OrdinaryDifferentialEquation;
import org.hipparchus.ode.SecondaryODE;
import org.hipparchus.ode.events.Action;
import org.hipparchus.ode.events.ODEEventHandler;
import org.hipparchus.ode.sampling.AbstractODEStateInterpolator;
import org.hipparchus.ode.sampling.ODEStateInterpolator;
import org.hipparchus.ode.sampling.ODEStepHandler;
import org.hipparchus.util.Precision;
import org.orekit.attitudes.AttitudeProvider;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitIllegalStateException;
import org.orekit.errors.OrekitInternalError;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.Frame;
import org.orekit.orbits.OrbitType;
import org.orekit.orbits.PositionAngle;
import org.orekit.propagation.AbstractPropagator;
import org.orekit.propagation.BoundedPropagator;
import org.orekit.propagation.PropagationType;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.sampling.OrekitStepHandler;
import org.orekit.propagation.sampling.OrekitStepInterpolator;
import org.orekit.time.AbsoluteDate;
/** Common handling of {@link org.orekit.propagation.Propagator Propagator}
* methods for both numerical and semi-analytical propagators.
* @author Luc Maisonobe
*/
public abstract class AbstractIntegratedPropagator extends AbstractPropagator {
/** Event detectors not related to force models. */
private final List<EventDetector> detectors;
/** Integrator selected by the user for the orbital extrapolation process. */
private final ODEIntegrator integrator;
/** Mode handler. */
private ModeHandler modeHandler;
/** Additional equations. */
private List<AdditionalEquations> additionalEquations;
/** Counter for differential equations calls. */
private int calls;
/** Mapper between raw double components and space flight dynamics objects. */
private StateMapper stateMapper;
/** Equations mapper. */
private EquationsMapper equationsMapper;
/** Flag for resetting the state at end of propagation. */
private boolean resetAtEnd;
/** Type of orbit to output (mean or osculating) <br/>
* <p>
* This is used only in the case of semianalitical propagators where there is a clear separation between
* mean and short periodic elements. It is ignored by the Numerical propagator.
* </p>
*/
private PropagationType propagationType;
/** Build a new instance.
* @param integrator numerical integrator to use for propagation.
* @param propagationType type of orbit to output (mean or osculating).
*/
protected AbstractIntegratedPropagator(final ODEIntegrator integrator, final PropagationType propagationType) {
detectors = new ArrayList<EventDetector>();
additionalEquations = new ArrayList<AdditionalEquations>();
this.integrator = integrator;
this.propagationType = propagationType;
this.resetAtEnd = true;
}
/** Allow/disallow resetting the initial state at end of propagation.
* <p>
* By default, at the end of the propagation, the propagator resets the initial state
* to the final state, thus allowing a new propagation to be started from there without
* recomputing the part already performed. Calling this method with {@code resetAtEnd} set
* to false changes prevents such reset.
* </p>
* @param resetAtEnd if true, at end of each propagation, the {@link
* #getInitialState() initial state} will be reset to the final state of
* the propagation, otherwise the initial state will be preserved
* @since 9.0
*/
public void setResetAtEnd(final boolean resetAtEnd) {
this.resetAtEnd = resetAtEnd;
}
/** Initialize the mapper. */
protected void initMapper() {
stateMapper = createMapper(null, Double.NaN, null, null, null, null);
}
/** {@inheritDoc} */
public void setAttitudeProvider(final AttitudeProvider attitudeProvider) {
super.setAttitudeProvider(attitudeProvider);
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
attitudeProvider, stateMapper.getFrame());
}
/** Set propagation orbit type.
* @param orbitType orbit type to use for propagation, null for
* propagating using {@link org.orekit.utils.AbsolutePVCoordinates AbsolutePVCoordinates}
* rather than {@link org.orekit.orbits Orbit}
*/
protected void setOrbitType(final OrbitType orbitType) {
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
orbitType, stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get propagation parameter type.
* @return orbit type used for propagation, null for
* propagating using {@link org.orekit.utils.AbsolutePVCoordinates AbsolutePVCoordinates}
* rather than {@link org.orekit.orbits Orbit}
*/
protected OrbitType getOrbitType() {
return stateMapper.getOrbitType();
}
/** Check if only the mean elements should be used in a semianalitical propagation.
* @return {@link PropagationType MEAN} if only mean elements have to be used or
* {@link PropagationType OSCULATING} if osculating elements have to be also used.
*/
protected PropagationType isMeanOrbit() {
return propagationType;
}
/** Set position angle type.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param positionAngleType angle type to use for propagation
*/
protected void setPositionAngleType(final PositionAngle positionAngleType) {
stateMapper = createMapper(stateMapper.getReferenceDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), positionAngleType,
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get propagation parameter type.
* @return angle type to use for propagation
*/
protected PositionAngle getPositionAngleType() {
return stateMapper.getPositionAngleType();
}
/** Set the central attraction coefficient μ.
* @param mu central attraction coefficient (m³/s²)
*/
public void setMu(final double mu) {
stateMapper = createMapper(stateMapper.getReferenceDate(), mu,
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), stateMapper.getFrame());
}
/** Get the central attraction coefficient μ.
* @return mu central attraction coefficient (m³/s²)
* @see #setMu(double)
*/
public double getMu() {
return stateMapper.getMu();
}
/** Get the number of calls to the differential equations computation method.
* <p>The number of calls is reset each time the {@link #propagate(AbsoluteDate)}
* method is called.</p>
* @return number of calls to the differential equations computation method
*/
public int getCalls() {
return calls;
}
/** {@inheritDoc} */
@Override
public boolean isAdditionalStateManaged(final String name) {
// first look at already integrated states
if (super.isAdditionalStateManaged(name)) {
return true;
}
// then look at states we integrate ourselves
for (final AdditionalEquations equation : additionalEquations) {
if (equation.getName().equals(name)) {
return true;
}
}
return false;
}
/** {@inheritDoc} */
@Override
public String[] getManagedAdditionalStates() {
final String[] alreadyIntegrated = super.getManagedAdditionalStates();
final String[] managed = new String[alreadyIntegrated.length + additionalEquations.size()];
System.arraycopy(alreadyIntegrated, 0, managed, 0, alreadyIntegrated.length);
for (int i = 0; i < additionalEquations.size(); ++i) {
managed[i + alreadyIntegrated.length] = additionalEquations.get(i).getName();
}
return managed;
}
/** Add a set of user-specified equations to be integrated along with the orbit propagation.
* @param additional additional equations
*/
public void addAdditionalEquations(final AdditionalEquations additional) {
// check if the name is already used
if (isAdditionalStateManaged(additional.getName())) {
// this set of equations is already registered, complain
throw new OrekitException(OrekitMessages.ADDITIONAL_STATE_NAME_ALREADY_IN_USE,
additional.getName());
}
// this is really a new set of equations, add it
additionalEquations.add(additional);
}
/** {@inheritDoc} */
public void addEventDetector(final EventDetector detector) {
detectors.add(detector);
}
/** {@inheritDoc} */
public Collection<EventDetector> getEventsDetectors() {
return Collections.unmodifiableCollection(detectors);
}
/** {@inheritDoc} */
public void clearEventsDetectors() {
detectors.clear();
}
/** Set up all user defined event detectors.
*/
protected void setUpUserEventDetectors() {
for (final EventDetector detector : detectors) {
setUpEventDetector(integrator, detector);
}
}
/** Wrap an Orekit event detector and register it to the integrator.
* @param integ integrator into which event detector should be registered
* @param detector event detector to wrap
*/
protected void setUpEventDetector(final ODEIntegrator integ, final EventDetector detector) {
integ.addEventHandler(new AdaptedEventDetector(detector),
detector.getMaxCheckInterval(),
detector.getThreshold(),
detector.getMaxIterationCount());
}
/** {@inheritDoc}
* <p>Note that this method has the side effect of replacing the step handlers
* of the underlying integrator set up in the {@link
* #AbstractIntegratedPropagator(ODEIntegrator, PropagationType) constructor}. So if a specific
* step handler is needed, it should be added after this method has been callled.</p>
*/
public void setSlaveMode() {
super.setSlaveMode();
if (integrator != null) {
integrator.clearStepHandlers();
}
modeHandler = null;
}
/** {@inheritDoc}
* <p>Note that this method has the side effect of replacing the step handlers
* of the underlying integrator set up in the {@link
* #AbstractIntegratedPropagator(ODEIntegrator, PropagationType) constructor}. So if a specific
* step handler is needed, it should be added after this method has been callled.</p>
*/
public void setMasterMode(final OrekitStepHandler handler) {
super.setMasterMode(handler);
integrator.clearStepHandlers();
final AdaptedStepHandler wrapped = new AdaptedStepHandler(handler);
integrator.addStepHandler(wrapped);
modeHandler = wrapped;
}
/** {@inheritDoc}
* <p>Note that this method has the side effect of replacing the step handlers
* of the underlying integrator set up in the {@link
* #AbstractIntegratedPropagator(ODEIntegrator, PropagationType) constructor}. So if a specific
* step handler is needed, it should be added after this method has been called.</p>
*/
public void setEphemerisMode() {
super.setEphemerisMode();
integrator.clearStepHandlers();
final EphemerisModeHandler ephemeris = new EphemerisModeHandler();
modeHandler = ephemeris;
integrator.addStepHandler(ephemeris);
}
/**
* {@inheritDoc}
*
* <p>Note that this method has the side effect of replacing the step handlers of the
* underlying integrator set up in the {@link #AbstractIntegratedPropagator(ODEIntegrator,
* PropagationType) constructor}.</p>
*/
@Override
public void setEphemerisMode(final OrekitStepHandler handler) {
super.setEphemerisMode();
integrator.clearStepHandlers();
final EphemerisModeHandler ephemeris = new EphemerisModeHandler(handler);
modeHandler = ephemeris;
integrator.addStepHandler(ephemeris);
}
/** {@inheritDoc} */
public BoundedPropagator getGeneratedEphemeris()
throws IllegalStateException {
if (getMode() != EPHEMERIS_GENERATION_MODE) {
throw new OrekitIllegalStateException(OrekitMessages.PROPAGATOR_NOT_IN_EPHEMERIS_GENERATION_MODE);
}
return ((EphemerisModeHandler) modeHandler).getEphemeris();
}
/** Create a mapper between raw double components and spacecraft state.
/** Simple constructor.
* <p>
* The position parameter type is meaningful only if {@link
* #getOrbitType() propagation orbit type}
* support it. As an example, it is not meaningful for propagation
* in {@link OrbitType#CARTESIAN Cartesian} parameters.
* </p>
* @param referenceDate reference date
* @param mu central attraction coefficient (m³/s²)
* @param orbitType orbit type to use for mapping
* @param positionAngleType angle type to use for propagation
* @param attitudeProvider attitude provider
* @param frame inertial frame
* @return new mapper
*/
protected abstract StateMapper createMapper(AbsoluteDate referenceDate, double mu,
OrbitType orbitType, PositionAngle positionAngleType,
AttitudeProvider attitudeProvider, Frame frame);
/** Get the differential equations to integrate (for main state only).
* @param integ numerical integrator to use for propagation.
* @return differential equations for main state
*/
protected abstract MainStateEquations getMainStateEquations(ODEIntegrator integ);
/** {@inheritDoc} */
public SpacecraftState propagate(final AbsoluteDate target) {
if (getStartDate() == null) {
if (getInitialState() == null) {
throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
}
setStartDate(getInitialState().getDate());
}
return propagate(getStartDate(), target);
}
/** {@inheritDoc} */
public SpacecraftState propagate(final AbsoluteDate tStart, final AbsoluteDate tEnd) {
if (getInitialState() == null) {
throw new OrekitException(OrekitMessages.INITIAL_STATE_NOT_SPECIFIED_FOR_ORBIT_PROPAGATION);
}
if (!tStart.equals(getInitialState().getDate())) {
// if propagation start date is not initial date,
// propagate from initial to start date without event detection
propagate(tStart, false);
}
// propagate from start date to end date with event detection
return propagate(tEnd, true);
}
/** Propagation with or without event detection.
* @param tEnd target date to which orbit should be propagated
* @param activateHandlers if true, step and event handlers should be activated
* @return state at end of propagation
*/
protected SpacecraftState propagate(final AbsoluteDate tEnd, final boolean activateHandlers) {
try {
initializePropagation();
if (getInitialState().getDate().equals(tEnd)) {
// don't extrapolate
return getInitialState();
}
// space dynamics view
stateMapper = createMapper(getInitialState().getDate(), stateMapper.getMu(),
stateMapper.getOrbitType(), stateMapper.getPositionAngleType(),
stateMapper.getAttitudeProvider(), getInitialState().getFrame());
if (Double.isNaN(getMu())) {
setMu(getInitialState().getMu());
}
if (getInitialState().getMass() <= 0.0) {
throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE,
getInitialState().getMass());
}
integrator.clearEventHandlers();
// set up events added by user, only if handlers are activated
if (activateHandlers) {
setUpUserEventDetectors();
}
// convert space flight dynamics API to math API
final ODEState mathInitialState = createInitialState(getInitialIntegrationState());
final ExpandableODE mathODE = createODE(integrator, mathInitialState);
equationsMapper = mathODE.getMapper();
// initialize mode handler
if (modeHandler != null) {
modeHandler.initialize(activateHandlers, tEnd);
}
// mathematical integration
final ODEStateAndDerivative mathFinalState;
beforeIntegration(getInitialState(), tEnd);
mathFinalState = integrator.integrate(mathODE, mathInitialState,
tEnd.durationFrom(getInitialState().getDate()));
afterIntegration();
// get final state
SpacecraftState finalState =
stateMapper.mapArrayToState(stateMapper.mapDoubleToDate(mathFinalState.getTime(),
tEnd),
mathFinalState.getPrimaryState(),
mathFinalState.getPrimaryDerivative(),
propagationType);
finalState = updateAdditionalStates(finalState);
for (int i = 0; i < additionalEquations.size(); ++i) {
final double[] secondary = mathFinalState.getSecondaryState(i + 1);
finalState = finalState.addAdditionalState(additionalEquations.get(i).getName(),
secondary);
}
if (resetAtEnd) {
resetInitialState(finalState);
setStartDate(finalState.getDate());
}
return finalState;
} catch (MathRuntimeException mre) {
throw OrekitException.unwrap(mre);
}
}
/** Get the initial state for integration.
* @return initial state for integration
*/
protected SpacecraftState getInitialIntegrationState() {
return getInitialState();
}
/** Create an initial state.
* @param initialState initial state in flight dynamics world
* @return initial state in mathematics world
*/
private ODEState createInitialState(final SpacecraftState initialState) {
// retrieve initial state
final double[] primary = new double[getBasicDimension()];
stateMapper.mapStateToArray(initialState, primary, null);
// secondary part of the ODE
final double[][] secondary = new double[additionalEquations.size()][];
for (int i = 0; i < additionalEquations.size(); ++i) {
final AdditionalEquations additional = additionalEquations.get(i);
secondary[i] = initialState.getAdditionalState(additional.getName());
}
return new ODEState(0.0, primary, secondary);
}
/** Create an ODE with all equations.
* @param integ numerical integrator to use for propagation.
* @param mathInitialState initial state
* @return a new ode
*/
private ExpandableODE createODE(final ODEIntegrator integ,
final ODEState mathInitialState) {
final ExpandableODE ode =
new ExpandableODE(new ConvertedMainStateEquations(getMainStateEquations(integ)));
// secondary part of the ODE
for (int i = 0; i < additionalEquations.size(); ++i) {
final AdditionalEquations additional = additionalEquations.get(i);
final SecondaryODE secondary =
new ConvertedSecondaryStateEquations(additional,
mathInitialState.getSecondaryStateDimension(i + 1));
ode.addSecondaryEquations(secondary);
}
return ode;
}
/** Method called just before integration.
* <p>
* The default implementation does nothing, it may be specialized in subclasses.
* </p>
* @param initialState initial state
* @param tEnd target date at which state should be propagated
*/
protected void beforeIntegration(final SpacecraftState initialState,
final AbsoluteDate tEnd) {
// do nothing by default
}
/** Method called just after integration.
* <p>
* The default implementation does nothing, it may be specialized in subclasses.
* </p>
*/
protected void afterIntegration() {
// do nothing by default
}
/** Get state vector dimension without additional parameters.
* @return state vector dimension without additional parameters.
*/
public int getBasicDimension() {
return 7;
}
/** Get the integrator used by the propagator.
* @return the integrator.
*/
protected ODEIntegrator getIntegrator() {
return integrator;
}
/** Get a complete state with all additional equations.
* @param t current value of the independent <I>time</I> variable
* @param y array containing the current value of the state vector
* @param yDot array containing the current value of the state vector derivative
* @return complete state
*/
private SpacecraftState getCompleteState(final double t, final double[] y, final double[] yDot) {
// main state
SpacecraftState state = stateMapper.mapArrayToState(t, y, yDot, propagationType);
// pre-integrated additional states
state = updateAdditionalStates(state);
// additional states integrated here
if (!additionalEquations.isEmpty()) {
for (int i = 0; i < additionalEquations.size(); ++i) {
state = state.addAdditionalState(additionalEquations.get(i).getName(),
equationsMapper.extractEquationData(i + 1, y));
}
}
return state;
}
/** Differential equations for the main state (orbit, attitude and mass). */
public interface MainStateEquations {
/**
* Initialize the equations at the start of propagation. This method will be
* called before any calls to {@link #computeDerivatives(SpacecraftState)}.
*
* <p> The default implementation of this method does nothing.
*
* @param initialState initial state information at the start of propagation.
* @param target date of propagation. Not equal to {@code
* initialState.getDate()}.
*/
default void init(final SpacecraftState initialState, final AbsoluteDate target) {
}
/** Compute differential equations for main state.
* @param state current state
* @return derivatives of main state
*/
double[] computeDerivatives(SpacecraftState state);
}
/** Differential equations for the main state (orbit, attitude and mass), with converted API. */
private class ConvertedMainStateEquations implements OrdinaryDifferentialEquation {
/** Main state equations. */
private final MainStateEquations main;
/** Simple constructor.
* @param main main state equations
*/
ConvertedMainStateEquations(final MainStateEquations main) {
this.main = main;
calls = 0;
}
/** {@inheritDoc} */
public int getDimension() {
return getBasicDimension();
}
@Override
public void init(final double t0, final double[] y0, final double finalTime) {
// update space dynamics view
SpacecraftState initialState = stateMapper.mapArrayToState(t0, y0, null, PropagationType.MEAN);
initialState = updateAdditionalStates(initialState);
final AbsoluteDate target = stateMapper.mapDoubleToDate(finalTime);
main.init(initialState, target);
}
/** {@inheritDoc} */
public double[] computeDerivatives(final double t, final double[] y) {
// increment calls counter
++calls;
// update space dynamics view
SpacecraftState currentState = stateMapper.mapArrayToState(t, y, null, PropagationType.MEAN);
currentState = updateAdditionalStates(currentState);
// compute main state differentials
return main.computeDerivatives(currentState);
}
}
/** Differential equations for the secondary state (Jacobians, user variables ...), with converted API. */
private class ConvertedSecondaryStateEquations implements SecondaryODE {
/** Additional equations. */
private final AdditionalEquations equations;
/** Dimension of the additional state. */
private final int dimension;
/** Simple constructor.
* @param equations additional equations
* @param dimension dimension of the additional state
*/
ConvertedSecondaryStateEquations(final AdditionalEquations equations,
final int dimension) {
this.equations = equations;
this.dimension = dimension;
}
/** {@inheritDoc} */
@Override
public int getDimension() {
return dimension;
}
/** {@inheritDoc} */
@Override
public void init(final double t0, final double[] primary0,
final double[] secondary0, final double finalTime) {
// update space dynamics view
SpacecraftState initialState = stateMapper.mapArrayToState(t0, primary0, null, PropagationType.MEAN);
initialState = updateAdditionalStates(initialState);
initialState = initialState.addAdditionalState(equations.getName(), secondary0);
final AbsoluteDate target = stateMapper.mapDoubleToDate(finalTime);
equations.init(initialState, target);
}
/** {@inheritDoc} */
@Override
public double[] computeDerivatives(final double t, final double[] primary,
final double[] primaryDot, final double[] secondary) {
// update space dynamics view
SpacecraftState currentState = stateMapper.mapArrayToState(t, primary, primaryDot, PropagationType.MEAN);
currentState = updateAdditionalStates(currentState);
currentState = currentState.addAdditionalState(equations.getName(), secondary);
// compute additional derivatives
final double[] secondaryDot = new double[secondary.length];
final double[] additionalMainDot =
equations.computeDerivatives(currentState, secondaryDot);
if (additionalMainDot != null) {
// the additional equations have an effect on main equations
for (int i = 0; i < additionalMainDot.length; ++i) {
primaryDot[i] += additionalMainDot[i];
}
}
return secondaryDot;
}
}
/** Adapt an {@link org.orekit.propagation.events.EventDetector}
* to Hipparchus {@link org.hipparchus.ode.events.ODEEventHandler} interface.
* @author Fabien Maussion
*/
private class AdaptedEventDetector implements ODEEventHandler {
/** Underlying event detector. */
private final EventDetector detector;
/** Time of the previous call to g. */
private double lastT;
/** Value from the previous call to g. */
private double lastG;
/** Build a wrapped event detector.
* @param detector event detector to wrap
*/
AdaptedEventDetector(final EventDetector detector) {
this.detector = detector;
this.lastT = Double.NaN;
this.lastG = Double.NaN;
}
/** {@inheritDoc} */
public void init(final ODEStateAndDerivative s0, final double t) {
detector.init(getCompleteState(s0.getTime(), s0.getCompleteState(), s0.getCompleteDerivative()),
stateMapper.mapDoubleToDate(t));
this.lastT = Double.NaN;
this.lastG = Double.NaN;
}
/** {@inheritDoc} */
public double g(final ODEStateAndDerivative s) {
if (!Precision.equals(lastT, s.getTime(), 0)) {
lastT = s.getTime();
lastG = detector.g(getCompleteState(s.getTime(), s.getCompleteState(), s.getCompleteDerivative()));
}
return lastG;
}
/** {@inheritDoc} */
public Action eventOccurred(final ODEStateAndDerivative s, final boolean increasing) {
return detector.eventOccurred(
getCompleteState(
s.getTime(),
s.getCompleteState(),
s.getCompleteDerivative()),
increasing);
}
/** {@inheritDoc} */
public ODEState resetState(final ODEStateAndDerivative s) {
final SpacecraftState oldState = getCompleteState(s.getTime(), s.getCompleteState(), s.getCompleteDerivative());
final SpacecraftState newState = detector.resetState(oldState);
stateChanged(newState);
// main part
final double[] primary = new double[s.getPrimaryStateDimension()];
stateMapper.mapStateToArray(newState, primary, null);
// secondary part
final double[][] secondary = new double[additionalEquations.size()][];
for (int i = 0; i < additionalEquations.size(); ++i) {
secondary[i] = newState.getAdditionalState(additionalEquations.get(i).getName());
}
return new ODEState(newState.getDate().durationFrom(getStartDate()),
primary, secondary);
}
}
/** Adapt an {@link org.orekit.propagation.sampling.OrekitStepHandler}
* to Hipparchus {@link ODEStepHandler} interface.
* @author Luc Maisonobe
*/
private class AdaptedStepHandler implements ODEStepHandler, ModeHandler {
/** Underlying handler. */
private final OrekitStepHandler handler;
/** Flag for handler . */
private boolean activate;
/** Build an instance.
* @param handler underlying handler to wrap
*/
AdaptedStepHandler(final OrekitStepHandler handler) {
this.handler = handler;
}
/** {@inheritDoc} */
public void initialize(final boolean activateHandlers,
final AbsoluteDate targetDate) {
this.activate = activateHandlers;
}
/** {@inheritDoc} */
public void init(final ODEStateAndDerivative s0, final double t) {
if (activate) {
handler.init(getCompleteState(s0.getTime(), s0.getCompleteState(), s0.getCompleteDerivative()),
stateMapper.mapDoubleToDate(t));
}
}
/** {@inheritDoc} */
public void handleStep(final ODEStateInterpolator interpolator, final boolean isLast) {
if (activate) {
handler.handleStep(new AdaptedStepInterpolator(interpolator), isLast);
}
}
}
/** Adapt an Hipparchus {@link ODEStateInterpolator}
* to an orekit {@link OrekitStepInterpolator} interface.
* @author Luc Maisonobe
*/
private class AdaptedStepInterpolator implements OrekitStepInterpolator {
/** Underlying raw rawInterpolator. */
private final ODEStateInterpolator mathInterpolator;
/** Simple constructor.
* @param mathInterpolator underlying raw interpolator
*/
AdaptedStepInterpolator(final ODEStateInterpolator mathInterpolator) {
this.mathInterpolator = mathInterpolator;
}
/** {@inheritDoc}} */
@Override
public SpacecraftState getPreviousState() {
return convert(mathInterpolator.getPreviousState());
}
/** {@inheritDoc}} */
@Override
public boolean isPreviousStateInterpolated() {
return mathInterpolator.isPreviousStateInterpolated();
}
/** {@inheritDoc}} */
@Override
public SpacecraftState getCurrentState() {
return convert(mathInterpolator.getCurrentState());
}
/** {@inheritDoc}} */
@Override
public boolean isCurrentStateInterpolated() {
return mathInterpolator.isCurrentStateInterpolated();
}
/** {@inheritDoc}} */
@Override
public SpacecraftState getInterpolatedState(final AbsoluteDate date) {
return convert(mathInterpolator.getInterpolatedState(date.durationFrom(stateMapper.getReferenceDate())));
}
/** Convert a state from mathematical world to space flight dynamics world.
* @param os mathematical state
* @return space flight dynamics state
*/
private SpacecraftState convert(final ODEStateAndDerivative os) {
SpacecraftState s =
stateMapper.mapArrayToState(os.getTime(),
os.getPrimaryState(),
os.getPrimaryDerivative(),
propagationType);
s = updateAdditionalStates(s);
for (int i = 0; i < additionalEquations.size(); ++i) {
final double[] secondary = os.getSecondaryState(i + 1);
s = s.addAdditionalState(additionalEquations.get(i).getName(), secondary);
}
return s;
}
/** Convert a state from space flight dynamics world to mathematical world.
* @param state space flight dynamics state
* @return mathematical state
*/
private ODEStateAndDerivative convert(final SpacecraftState state) {
// retrieve initial state
final double[] primary = new double[getBasicDimension()];
final double[] primaryDot = new double[getBasicDimension()];
stateMapper.mapStateToArray(state, primary, primaryDot);
// secondary part of the ODE
final double[][] secondary = new double[additionalEquations.size()][];
for (int i = 0; i < additionalEquations.size(); ++i) {
final AdditionalEquations additional = additionalEquations.get(i);
secondary[i] = state.getAdditionalState(additional.getName());
}
return new ODEStateAndDerivative(stateMapper.mapDateToDouble(state.getDate()),
primary, primaryDot,
secondary, null);
}
/** {@inheritDoc}} */
@Override
public boolean isForward() {
return mathInterpolator.isForward();
}
/** {@inheritDoc}} */
@Override
public AdaptedStepInterpolator restrictStep(final SpacecraftState newPreviousState,
final SpacecraftState newCurrentState) {
try {
final AbstractODEStateInterpolator aosi = (AbstractODEStateInterpolator) mathInterpolator;
return new AdaptedStepInterpolator(aosi.restrictStep(convert(newPreviousState),
convert(newCurrentState)));
} catch (ClassCastException cce) {
// this should never happen
throw new OrekitInternalError(cce);
}
}
}
private class EphemerisModeHandler implements ModeHandler, ODEStepHandler {
/** Underlying raw mathematical model. */
private DenseOutputModel model;
/** Generated ephemeris. */
private BoundedPropagator ephemeris;
/** Flag for handler . */
private boolean activate;
/** the user supplied end date. Propagation may not end on this date. */
private AbsoluteDate endDate;
/** User's integration step handler. May be null. */
private final AdaptedStepHandler handler;
/** Creates a new instance of EphemerisModeHandler which must be
* filled by the propagator.
*/
EphemerisModeHandler() {
this.handler = null;
}
/** Creates a new instance of EphemerisModeHandler which must be
* filled by the propagator.
* @param handler the handler to notify of every integrator step.
*/
EphemerisModeHandler(final OrekitStepHandler handler) {
this.handler = new AdaptedStepHandler(handler);
}
/** {@inheritDoc} */
public void initialize(final boolean activateHandlers,
final AbsoluteDate targetDate) {
this.activate = activateHandlers;
this.model = new DenseOutputModel();
this.endDate = targetDate;
// ephemeris will be generated when last step is processed
this.ephemeris = null;
if (this.handler != null) {
this.handler.initialize(activateHandlers, targetDate);
}
}
/** Get the generated ephemeris.
* @return a new instance of the generated ephemeris
*/
public BoundedPropagator getEphemeris() {
return ephemeris;
}
/** {@inheritDoc} */
public void handleStep(final ODEStateInterpolator interpolator, final boolean isLast) {
if (activate) {
if (this.handler != null) {
this.handler.handleStep(interpolator, isLast);
}
model.handleStep(interpolator, isLast);
if (isLast) {
// set up the boundary dates
final double tI = model.getInitialTime();
final double tF = model.getFinalTime();
// tI is almost? always zero
final AbsoluteDate startDate =
stateMapper.mapDoubleToDate(tI);
final AbsoluteDate finalDate =
stateMapper.mapDoubleToDate(tF, this.endDate);
final AbsoluteDate minDate;
final AbsoluteDate maxDate;
if (tF < tI) {
minDate = finalDate;
maxDate = startDate;
} else {
minDate = startDate;
maxDate = finalDate;
}
// get the initial additional states that are not managed
final Map<String, double[]> unmanaged = new HashMap<String, double[]>();
for (final Map.Entry<String, double[]> initial : getInitialState().getAdditionalStates().entrySet()) {
if (!isAdditionalStateManaged(initial.getKey())) {
// this additional state was in the initial state, but is unknown to the propagator
// we simply copy its initial value as is
unmanaged.put(initial.getKey(), initial.getValue());
}
}
// get the names of additional states managed by differential equations
final String[] names = new String[additionalEquations.size()];
for (int i = 0; i < names.length; ++i) {
names[i] = additionalEquations.get(i).getName();
}
// create the ephemeris
ephemeris = new IntegratedEphemeris(startDate, minDate, maxDate,
stateMapper, propagationType, model, unmanaged,
getAdditionalStateProviders(), names);
}
}
}
/** {@inheritDoc} */
public void init(final ODEStateAndDerivative s0, final double t) {
model.init(s0, t);
if (this.handler != null) {
this.handler.init(s0, t);
}
}
}
}