OsculatingToMeanElementsConverter.java
/* Copyright 2002-2020 CS Group
* Licensed to CS Group (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.propagation.conversion;
import org.orekit.orbits.PositionAngle;
import org.orekit.propagation.Propagator;
import org.orekit.propagation.SpacecraftState;
/** This class converts osculating orbital elements into mean elements.
* <p>
* As this process depends on the force models used to average the orbit,
* a {@link Propagator} is given as input. The force models used will be
* those contained into the propagator. This propagator <em>must</em>
* support its initial state to be reset, and this initial state <em>must</em>
* represent some mean value. This implies that this method will not work
* with {@link org.orekit.propagation.analytical.tle.TLEPropagator TLE propagators}
* because their initial state cannot be reset, and it won't work either with
* {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator Eckstein-Hechler
* propagator} as their initial state is osculating and not mean. As of 6.0, this
* works mainly for {@link org.orekit.propagation.semianalytical.dsst.DSSTPropagator
* DSST propagator}.
* </p>
* @author rdicosta
* @author Pascal Parraud
*/
public class OsculatingToMeanElementsConverter {
/** Integrator maximum evaluation. */
private static final int MAX_EVALUATION = 1000;
/** Initial orbit to convert. */
private final SpacecraftState state;
/** Number of satellite revolutions in the averaging interval. */
private final int satelliteRevolution;
/** Propagator used to compute mean orbit. */
private final Propagator propagator;
/** Scaling factor used for orbital parameters normalization. */
private double positionScale;
/** Constructor.
* @param state initial orbit to convert
* @param satelliteRevolution number of satellite revolutions in the averaging interval
* @param propagator propagator used to compute mean orbit
* @param positionScale scaling factor used for orbital parameters normalization
* (typically set to the expected standard deviation of the position)
*/
public OsculatingToMeanElementsConverter(final SpacecraftState state,
final int satelliteRevolution,
final Propagator propagator,
final double positionScale) {
this.state = state;
this.satelliteRevolution = satelliteRevolution;
this.propagator = propagator;
this.positionScale = positionScale;
}
/** Convert an osculating orbit into a mean orbit, in DSST sense.
* @return mean orbit state, in DSST sense
*/
public final SpacecraftState convert() {
final double timeSpan = state.getKeplerianPeriod() * satelliteRevolution;
propagator.resetInitialState(state);
final FiniteDifferencePropagatorConverter converter =
new FiniteDifferencePropagatorConverter(new KeplerianPropagatorBuilder(state.getOrbit(),
PositionAngle.MEAN,
positionScale,
propagator.getAttitudeProvider()),
1.e-6, MAX_EVALUATION);
final Propagator prop = converter.convert(propagator, timeSpan, satelliteRevolution * 36);
return prop.getInitialState();
}
}