SingleBodyAbsoluteAttraction.java
/* Copyright 2002-2020 CS Group
* Licensed to CS Group (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.gravity;
import java.util.stream.Stream;
import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.bodies.CelestialBodies;
import org.orekit.bodies.CelestialBody;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitInternalError;
import org.orekit.forces.AbstractForceModel;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.events.FieldEventDetector;
import org.orekit.utils.ParameterDriver;
/** Body attraction force model computed as absolute acceleration towards a body.
* <p>
* This force model represents the same physical principles as {@link NewtonianAttraction},
* but has several major differences:
* </p>
* <ul>
* <li>the attracting body can be <em>away</em> from the integration frame center,</li>
* <li>several instances of this force model can be added when several bodies are involved,</li>
* <li>this force model is <em>never</em> automatically added by the numerical propagator</li>
* </ul>
* <p>
* The possibility for the attracting body to be away from the frame center allows to use this force
* model when integrating for example an interplanetary trajectory propagated in an Earth centered
* frame (in which case an instance of {@link org.orekit.forces.inertia.InertialForces} must also be
* added to take into account the coupling effect of relative frames motion).
* </p>
* <p>
* The possibility to add several instances allows to use this in interplanetary trajectories or
* in trajectories about Lagrangian points
* </p>
* <p>
* The fact this force model is <em>never</em> automatically added by the numerical propagator differs
* from {@link NewtonianAttraction} as {@link NewtonianAttraction} may be added automatically when
* propagating a trajectory represented as an {@link org.orekit.orbits.Orbit}, which must always refer
* to a central body, if user did not add the {@link NewtonianAttraction} or set the central attraction
* coefficient by himself.
* </p>
* @see org.orekit.forces.inertia.InertialForces
* @author Luc Maisonobe
* @author Julio Hernanz
*/
public class SingleBodyAbsoluteAttraction extends AbstractForceModel {
/** Suffix for parameter name for attraction coefficient enabling Jacobian processing. */
public static final String ATTRACTION_COEFFICIENT_SUFFIX = " attraction coefficient";
/** Central attraction scaling factor.
* <p>
* We use a power of 2 to avoid numeric noise introduction
* in the multiplications/divisions sequences.
* </p>
*/
private static final double MU_SCALE = FastMath.scalb(1.0, 32);
/** The body to consider. */
private final CelestialBody body;
/** Driver for gravitational parameter. */
private final ParameterDriver gmParameterDriver;
/** Simple constructor.
* @param body the body to consider
* (ex: {@link CelestialBodies#getSun()} or
* {@link CelestialBodies#getMoon()})
*/
public SingleBodyAbsoluteAttraction(final CelestialBody body) {
try {
gmParameterDriver = new ParameterDriver(body.getName() + ATTRACTION_COEFFICIENT_SUFFIX,
body.getGM(), MU_SCALE,
0.0, Double.POSITIVE_INFINITY);
} catch (OrekitException oe) {
// this should never occur
throw new OrekitInternalError(oe);
}
this.body = body;
}
/** {@inheritDoc} */
@Override
public boolean dependsOnPositionOnly() {
return true;
}
/** {@inheritDoc} */
@Override
public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {
// compute bodies separation vectors and squared norm
final Vector3D bodyPosition = body.getPVCoordinates(s.getDate(), s.getFrame()).getPosition();
final Vector3D satToBody = bodyPosition.subtract(s.getPVCoordinates().getPosition());
final double r2Sat = satToBody.getNormSq();
// compute absolute acceleration
return new Vector3D(parameters[0] / (r2Sat * FastMath.sqrt(r2Sat)), satToBody);
}
/** {@inheritDoc} */
@Override
public <T extends RealFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
final T[] parameters) {
// compute bodies separation vectors and squared norm
final FieldVector3D<T> centralToBody = new FieldVector3D<>(s.getA().getField(),
body.getPVCoordinates(s.getDate().toAbsoluteDate(), s.getFrame()).getPosition());
final FieldVector3D<T> satToBody = centralToBody.subtract(s.getPVCoordinates().getPosition());
final T r2Sat = satToBody.getNormSq();
// compute absolute acceleration
return new FieldVector3D<>(parameters[0].divide(r2Sat.multiply(r2Sat.sqrt())), satToBody);
}
/** {@inheritDoc} */
public Stream<EventDetector> getEventsDetectors() {
return Stream.empty();
}
@Override
/** {@inheritDoc} */
public <T extends RealFieldElement<T>> Stream<FieldEventDetector<T>> getFieldEventsDetectors(final Field<T> field) {
return Stream.empty();
}
/** {@inheritDoc} */
public ParameterDriver[] getParametersDrivers() {
return new ParameterDriver[] {
gmParameterDriver
};
}
}