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Abstract

This paper discusses the accurate and efficient modelling of the tesseral
linear combination short periodics due to high order shallow resonant terms.
Previous development of the Semianalytical Satellite Theory (SST) split
the dynamical perturbations into the Mean Element Equations of Motion
and the Short Periodic Motion. The smooth force models for the mean
elements are integrated with very large step sizes (1 day in length), while
the short periodics are recovered analytically. Each portion of the theory
employs recursions on the special functions to allow for a high degree of
model selectivity. Shallow resonant orbits pose unique challenges for the
SST because:

1. The primary shallow resonance frequency may constrain the mean
element numerical integration size

2. The tesseral harmonics with order adjacent to the resonant order are
likely to contribute significant short period motion

Because the current SST tesseral harmonic linear combination term short
periodic model software has only the maximum degree and order as input
parameters, all the intermediate short period terms must be included. Com-
plete modelling of the shallow resonant terms may exceed the software lim-
itations of the current SST implementation (400 linear combination terms).
To study the performance of the SST for shallow resonant cases, a mod-
ified form of the SST tesseral linear combination short periodic software
has been constructed in which the number of allowed linear combination
terms is increased to 1600. For a 21 x 21 geopotential field case, inclusion of
the shallow resonance terms in the short periodic model suggests the exis-
tence of significant J2 secular /shallow resonance coupling terms. A compact
analytical model is developed for these terms.




INTRODUCTION

The development of Semianalytical Satellite Theory (SST) is motivated by
the desire to develop a perturbation theory capable of demonstrating accuracy
across a broad range of satellite orbits. Previous development of the Semiana-
lytical Satellite Theory (SST) split the dynamical perturbations into the Mean
Element Equations of Motion and the Short Periodic Motion. The smooth force
models for the mean elements are integrated with very large step sizes (1 day
in length), while the short periodics are recovered analytically. The application
of a semianalytical satellite theory to high accuracy orbit prediction and deter-
mination problems requires extensive dynamical modelling for the short-period
motion as well as the long-period and secular motion. In application, the se-
lected models are orbit dependent. In this paper, we will focus on the tesseral
harmonic perturbations, and their application to satellites in shallow resonance.

Tesseral Harmonics Model

The disturbing potential U due to the gravitational field can be expressed by

U=
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where

u = Earth’s gravitational constant

r = distance from Earth to satellite

R, = equatorial radius of the Earth

¢ = geocentric latitude of the satellite

a = geographic longitude of the satellite

P,,m = associated Legendre function of degree [ and order m
Ci,m, Si,m = empirically determined gravity harmonic coefficients

The (C, S)i,m terms for which m # 0 are called the tesseral harmonics and
represent the longitude dependent deviations from sphericity. The tesseral har-
monics generally result in short-periodic perturbations of the orbit. However,
when the satellite’s mean motion is nearly a multiple of the Earth’s rotation
rate, the tesseral perturbations can have much larger periods and magnitudes.
This phenomena is called tesseral resonance.

A general formulation of the tesseral disturbing potential in terms of special
functions of the equinoctial elements was given by Cefola [3]. It was elaborated
in McClain [11], and [12], leading to an initial implementation by Dunham of
the resonance potential [13],[10]. That capability was limited; only 10 resonant
pairs of coefficients were included, each pair being separately implemented; and
the model was valid only for eccentricity < .5. The tesseral resonance model
subsequently was improved by Proulx [16], whose work included application




of a recursion formula for the Hansen coefficients [8]. Proulx and McClain
[17], [18] also developed a modified Hansen coefficient expansion with improved
eccentricity convergence. With these developments, full field implementation of
the tesseral resonance model was achieved, valid for all orbits with eccentricity
<1.0

The disturbing potential due to the Earth’s gravitational field may be cast
into a Fourier series

U= _Z Upn,e (2)

where
Unt = Vm,j cos("/’j,m) + W, ; sin(¥,m) (3)
with phase angles v; m = jA — m0 given in terms of A, the mean longitude, and
0, the Greenwich hour angle.
Based on the commensurability between the satellite’s mean motion and
the Earth’s rotation rate, the phase angles appearing in the potential can be
expressed as the disjoint union

{¥im} = {pjm} U {¢jm} (4)
of the slowly varying (resonant) phase angles, p;m, and the rapidly varying
(short-periodic) phase angles, ¢; m.

In reference [19] the mean element equations of motion to first order in the
geopotential harmonic coefficients were given by
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where (@;,ax) are the Poisson Brackets in the equinoctial elements derived by
Broucke and Cefola [2]; and & is the vector the mean equinoctial elements. The
term 7i6; ¢ is due to two-body mechanics, while Uo,o(f‘{) is the averaged poten-
tial due to the zonal harmonics in the geopotential. The first-order resonance
contribution to the mean element rates due to the slowly varying phase angle
Wj,m is given by
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The short-periodic motion is recovered analytically as a Fourier series in the
rapidly varying phase angles ¢; m

Aa; = E C;,m cos(pj,m) + D‘»'m sin(¢j,m) (M

Jm
The coefficients of this series are functions of the five slowly varying mean
equinoctial elements. For m = 0, Slutsky [14] developed a closed form ex-
pression in the eccentricity for the zonal short periodic coefficients, in terms of




the true longitude. Proulx et. al. developed recursive analytic expressions for
the tesseral linear combination terms [19]. For j = 0,the m-daily expressions are
closed form in the eccentricity; the remaining tesseral short periodic variations
are developed in power series in the eccentricity.

The SST tesseral perturbation models have been tested exhaustively for low
altitude, non-resonant cases [19] and for high altitude deep resonance cases,
e.g.Geosynchronous, Molniya (see [5],(6]). There has recently been interest in
satellites whose orbits have long repeat ground tracks. Such orbits tend to be in
shallow resonance with the Earth. Recent analyses of the tesseral geopotential
terms such as the 1987 ERS-1 study by Wakker [20] have clearly shown the
importance of

e Low degree and order geopotential terms
e High degree and order terms centered around the shallow resonant order

The currently available algorithmic approach to tesseral perturbations was
designed to include low degree and order terms in the short periodic model,
and to include the resonant frequency in the mean element equations of mo-
tion (see the left side of Figure 1). For the typical non-resonant, or deeply
resonant satellites, this presents no difficulty. However, to model high order
shallow resonant terms, together with their side bands, requires the computa-
tion of many negligible intermediate terms in order to include the high degree
and order terms centered around the resonant order (see the right side of Fig-
ure 1). The software implementation of the SST model limits the total number
of linear combination short periodic frequencies to 400 terms. Inclusion of the
full geopotential model to take in the tesseral perturbations around a shallow
resonance breaks that limit. Possible solutions to this problem have been con-
sidered. One solution forces shallow resonance terms into the resonance model
of the mean equations of motion. This has the effect of including frequencies as
short as once per day in these equations, thus limiting the numerical integration
stepsize which can be applied. Alternatively, the total number of tesseral short
periodic frequencies may be increased to include the full model. This causes the
computation of many negligible terms. The best solution is the development
of an architecture which will select the important low degree and order tesseral
short periodics, together with the non-negligible band of harmonics about the
shallow resonance. To facilitate the results in this paper, the second alternative
was chosen, increasing the allowed tesseral harmonic frequencies to 1600 terms.
This allows implementation of a full 21 x 21 tesseral model.

Numerical Results

In this section we show the results of an investigation into the accuracy of the
SST when applied to an orbit in shallow resonance. We chose for investigation
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Figure 1: Tesseral Software Architecture




a 13.4 rev/day, critical inclination orbit derived from King-Hele [9], and Oester-
winter [15]. The geometry of the orbit is shown in Table 1. The methodology
of our investigation consists of the following steps:

e Develop a numerically integrated Cowell trajectory as truth data
e Least Squares fit the SST theory to the truth data

e Examine the difference between the converged, best fit SST trajectory and
the truth

The objective of this method is to detect the character of the residual pattern,
and the occurence of Gibb’s phenomena in the observation span; and to detect
the occurence of secular growth due to unmodelled effects in the predict span.
As seen in Table 1 full force models were included in the truth trajectory; three
test cases were constructed by varying the geopotential field. In each testcase,
a five day truth model was created. The first three days were fit with the SST
using the force models shown in Table 2. The best estimated SST state was
predicted ahead for two days. Summaries of the fit and predict statistics are
shown in Table 3, Table 4, and Table 5.

The baseline 8 x 8 test case resulted, as expected, with very good fit and
predict residual statistics. Note in particular that the total position rms in
the three day observation span is only 0.99 meters, while the predict error rms
hovers just above 1 meter. Note that this test demonstrates the ability of the
SST to include J, terms.

The error statistics for the 21 x 21 case are approximately four times larger
than the 8 x 8 baseline test case. Of greater interest is that the dominant error in
the along track direction has a period equal to the dominant sideband frequency
about the shallow resonant term (approximately 35 hours). We have hypoth-
esized that this error is us due to unmodelled secular J; / shallow resonance
coupling. The last (small J2) test case was constructed to test this hypothesis.
The idea is that if the large, structured residual error is due to the coupling of
the J, averaged rates with the tesseral linear combination term, then making
Ja effectively zero should null out that dominant error signature. In this case,
note that full 21 x 21 short-periodic model is used. This is done to reduce the
noise in the observed error signal. The test supported our hypothesis. The
error statistics dropped back down to the near 1 meter values seen in the 8 x 8
baseline test case.

J» SECULAR/SHALLOW RESONANCE COU-
PLING MODEL

Berger[1] and Gooding[7] observed that the Jz / tesseral coupling causes 12
hour effects in the along-track direction of the satellite. In early testing of the




e Orbit (from RAE Table of Satellites and NSWC/DL-3724)

- a = 7485 km (alt = 1107 km)

- e=0.008

- i = 63.49 degrees

- w = 163 degrees

e Cowell Precision Integration (12th order Predictor/Corrector with 60 sec

step)

- Geopotential Choices (all use GEM-10B coefficients)

1. 8 x 8 geopotential
2. 21 x 21 geopotential

3. 21 x 21 geopotential with ’small’ J; = 0(107%)

e Truth Trajectory

- Lunar-Solar Point Masses

- Mean of 1950 (M50) integration coordinate system

- M50 position/velocity data at 450 sec intervals over 5 days

Table 1: Shallow Resonance Test Case

Mean Equations of Motion Force Model

8 x 8 Case | 21 x 21 Case (J2 #0) | 21 x 21 Case J2 = 0(107°)
Zonals Jz,...,Jg Jz,...,le Jz,...,le
Tesseral Resonance || None (13,13), ...,(21,13) (13,13), ..., (21,13)
J2% || yes yes yes
Third Body || Point mass | Point mass Point mass
Short Periodic Force Model
8 x 8 Case | 21 x 21 Case (J2 #0) | 21 x 21 Case J2 = 0o(107°)
Zonals Jz,...,Js Jz,...,le J2,...,J21
Tesseral m-dailys || 8 x 8 field | 21 x 21 field 21 x 21 field
Tesseral Harmonics |[ 8 x 8 field | 21 x 15 field 21 x 20 field
J2% || yes yes yes
Third Body || Point mass | Point mass Point mass

Table 2: Summary of SST Test Case Force Models




Position Differences (meters)

Position Observe Span || Predict Span
Component || RMS | MAX || RMS | MAX
Radial 0.34 | 0.94 0.54 | 1.29
Cross Track || 0.22 | 0.73 0.38 | 0.81
Along Track || 0.90 | 2.06 1.19 | 2.70
Total 0.99 | 2.10 1.36 | 2.85

Velocity Differences (cm /sec)

Velocity Observe Span || Predict Span
Component || RMS | MAX || RMS | MAX
Radial 0.07 | 0.16 0.08 | 0.19
Cross Track || 0.04 | 0.10 0.05 | 0.13
Along Track || 0.04 | 0.10 0.05 | 0.13
Total 0.09 | 0.18 0.11 | 0.22

Table 3: Summary of Results: SST vs 8 x 8 Truth

Position Differences (meters)

Position Observe Span || Predict Span
Component [[ RMS | MAX || RMS | MAX
Radial 0.53 | 1.05 0.66 | 1.43
Cross Track || 0.66 | 1.78 0.69 | 1.89
Along Track || 3.73 | 8.54 4.29 | 9.72
Total . 3.83 | 8.55 4.40 | 9.78

Velocity Differences (cm/sec)

Velocity Observe Span || Predict Span
Component | RMS | MAX [[ RMS | MAX
Radial 0.35 | 0.71 0.40 | 0.81
Cross Track || 0.07 | 0.16 0.08 | 0.20
Along Track || 0.05 | 0.15 0.06 | 0.15
Total 0.36 | 0.71 0.41 | 0.83

Table 4: Summary of Results: SST vs 21 x 21 Truth



Position Differences (meters)
Position Observe Span || Predict Span
Component || RMS | MAX || RMS | MAX
Radial 0.11 | 0.25 0.13 | 0.33
Cross Track || 0.44 | 1.41 0.39 | 1.11
Along Track || 1.29 | 2.75 1.27 | 3.23
Total 1.37 | 2.83 1.34 | 3.27

Velocity Differences (cm /sec)
Velocity Observe Span || Predict Span
Component || RMS | MAX || RMS | MAX
Radial 0.12 | 0.26 0.12 | 0.29
Cross Track [ 0.05 | 0.12 0.04 | 0.11
Along Track || 0.01 | 0.02 0.01 | 0.03
Total 0.13 | 0.26 0.13 | 0.29

Table 5: Summary of Results: SST vs 21 x 21 Truth (Small J;)

semianalytical tesseral short periodic software implementation, it was observed
that the J; / m-daily coupling contributed approximately 11 meters (rms) to the
total position error for low altitude satellites. Implementation of this coupling
term, derived by Cefola [4], reduced the total rms error from 12.6 meters to 1.8
meters[19]. What follows is a derivation of the J; / shallow resonance coupling
model, based Cefola’s derivation of the J; / m-daily coupling.

Let the osculating VOP equations of motion assume the form

a; = nbi ¢ + eFi(a@, A) + vGi(@, ¥jm) (8)

where @ is the vector of equinoctial elements, with ay, ..., as the slowly varying
elements, and with ag = ) the mean longitude. Here ¢F; is the J; contribution,
and vG; is the tesseral contribution associated to the harmonic ¥ m = jA —mf.
Following the generalized method of averaging, we assume the near-identity
transformation

a; = a; +eni(@, X) + vpi (8, ¥jm) + ev%i(@, Vjm) 9

where e7; is the Jy first order short periodic term, vp; is the first order tesseral
shallow resonance short periodic term, and evv; is the second order tesseral
shallow resonance short periodic term.

The averaged equations of motion takes the form

a; = 76 6 + €Ai(a) (10)

where
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with the average taking place over the fast variable ), is the first order J;
contribution to the mean equations of motion. The standard procedure in the
generalized method of averaging is to obtain two expressions for the osculating
element rates. These expressions are set equal on an order by order basis. To
shorten this development, only terms proportional to ev will be quoted, since
these are the new terms of interst.

Differentiating Eq. 9, and using Eq. 10 to estimate the mean element rates
gives the first expression of rate terms proportional to ev

Opi Op;
61/),, ; 3ak A
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(.7" '”Wc) JAG (12)

3¢J,m

Note that ¥;m = jA — m@ is the shallow resonance phase angle evaluated at
the mean mean longtitude. Expanding Eq. 8 in a Taylor series about the mean
elements gives an alternative expression of rate terms proportional to ev
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Equating expression 12 and expression 13, and applying the averaging operator
gives the fundamental differential equation for v;

3 Opi 6 _Opi 3 7l

Finally, Eq. 14 can be mtegrated analytically if an analytical form for the
tesseral short-periodic, p;, is assumed. Such an expression has been developed
explicitly in [19]. For the shallow resonance case, that form is given by

= 3 Gl 005(3m) + D Sin(Bim) (15)

Substituting Eq. 15 into Eq. 14 and performing the necessary algebra leads to
the Fourier series expansion for these coupling terms

evy; = E Ct o cos(Pjm) + Di 1 sin(hj,m) (16)
Jm
where
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It is noted that Eq. 17 and Eq. 18 reduce to those obtained by Cefola in [4]
when j = 0 (J2/m-daily coupling).

CONCLUSIONS AND FUTURE WORK

This artical has demonstrated that the current tesseral linear combination short
periodic model demonstrates approximately one (1) meter level accuracy for
satellites in non-resonant orbit, and approximately five (5) meter accuracy for
satellites in shallow resonant orbits. There appears to be a significant coupling
between the secular J, rates and the tesseral harmonics associated to shallow
resonance. An analytical model was derived for this phenomenon.

It appears that significant short-period and shallow resonant phenomena
for satellites in long repeat ground track orbits require a modification in the
software architecture which implements these perturbations. The concept is
to develop this architecture so that seperate, selectable, regions of the short-
periodic tesseral harmonic field are available: one region for low order terms,
and another region for shallow resonance side band terms.

In addition, to achieve the one (1) meter level accuracy, J2/shallow reso-
nance second-order coupling terms must be included in the tesseral short pe-
riodic model. Implementation of this model requires the calculation of partial
derivatives of the first-order short-period Fourier series coefficients, as seen in
Eq. 17, and Eq. 18. Recursive analytic models for the first order terms exist.
Future work includes a recursive analytic developement of their partial deriva-
tives.
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