
/-

NORAD GENERAL PERTUR8ATION THEORIES: 

AN INDEPENDENT ANALYSIS 

by 

DarreIl Lee Herriges 

8.S., United States Air Force Academy (1978) 
M.S., Troy State University (1984) 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

January 1988 

© The Charles Stark Draper Laboratory, Ine., 1988 

. '-7 

Sig natu re of Author: __ ·,...../---:;.,0_vt-_··'\..._t....,J ... .i-/_Ij~.~. __ .,_~=~;.o,..,--r/;....0_ .. ~...;..A_-_-~< __ :_':-_-,_.-+~ 1_/'-_0'-_',,-. __ 

bepartment of Aeronlutics . and-~ AsfronaÜtics 
15 january. 1988 

____________ ~_~. °U~~Jl 
Ce rtifi ed by: ------;--;;;;.....;;.....,--'-'''--_-'-'-_, 

- Paul J. Cef la, Thesis Advisor 
Lecturer, Department of Aeronautics and Astronautics 

Aeeepted by:---
rofessor Harold Y.Wachl11an 

Chairman, Aeronauties andAstronautics GraduateCommittee 
.'-'. 



NORAD GENERAL PERTURBAnON THEORIES: 

AN INDEPENDENT ANALYSIS 

by 

DarreIl Lee Herriges 

Submitted to the Department of Aeronautics and Astronautics 

in January 1988 in partial fulfillment of the requirements for the 

degree of Master of Science in Aeronautics and Astronautics. 

ABSTRACT 

This thesis accurately incorporates the NORAD general 

perturbation theories SGP, GP4/DP4 and HANDE into the Draper 

Laboratory modified Goddard Trajectory Determination System orbit 

computation pro gram. Actual SP ADOC 4B Fortran source code for the 

NORAD theories, that was obtained from the Ford Aerospace 

Corporation, formed the basis for this incorporation. This 

incorporation supports comparisons of the NORAD general 

perturbation theories with conventional special perturbations and 

with other more recent analytical and semianalytical satellite 

theories. It IS not presently possible to perform such comparisons 

within a single orbit computation program with consistent treatment 

of force models, co ordinate systems and time references. This 

system will be uniquely able to support analyses of the accuracy 

with which orbits can be determined and predicted with NORAD 

tracking data. 
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Both orbit generator and differential correction test cases are 

analyzed. The orbit generator results provide strong confidence in 

the accuracy of the incorporation. Differential correction analyses 

include both geosynchronous and low altitude cases. For simulated 

data analysis, a Precise Conversion of Elements procedure was 

utilized whereby a glven NORAD theory was used to obtain a 

differential correction fit to simulated observations. These 

observations were In the form of a position and velocity truth file 

that was created by the numerical evaluation of the equations of 

motion for each NORAD theory. A subsequent ephemeris, based 

upon this differential correction fit, is generated and compared with 

the corresponding reference orbit. The real data analysi~ employs a 

Differential Correction/Ephemeris Comparison procedure in which a 

designated NORAD theory processes real observations. The resulting 

orbit is compared to a differential correction fit of the same data 

with a high precision theory. Numerical results are available. 

Thesis Supervisor: Paul J. Cefola, Ph.D 
Section Chief 
Air Force and Defensive Systems Department 
The Charles Stark Draper Laboratory 

Lecturer 
Department of Aeronautics and Astronautics 
Massachusetts Institute of Technology 
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1.1 Motivation 

Chapter 1 

INTRODUCTION 

Today there is a need to cooperate among all astrodynamic, 

mathematical, and computer software professionals. As a nation, 

the United States lagged behind the Soviet space program from the 

launch of Sputnik until we put men on the moon. On July 20th, 1969, 

The United States of America became the leader in space. What has 

happened to this position of leadership? 

According to the following quotes from an article in TIME 

magazine, 5 October, 1987, the Soviets have overtaken our 

leadership role. Says Genevie've Debouzy, of the French space 

agency: "The seminars that ten years aga would have been given at 

the Goddard Space Flight Center are now given in Moscow." Says 

Heinz Hermann Koelle, a West German space-technology professor 

and former director of future projects at NASA's Marshall Space 

Flight Center: "American pre-eminence in space simply no longer 

exists." These comments are weil supported by the Soviets' present 

and upcoming space developments. 

The USSR's most notable development is their successful 

launch of Energia, abooster with a 100 ton payload capability. This 

exceeds our shuttle capability which has a maximum thirty-four ton 

capability [1]. The United States will not have a counterpart to 
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Energia until 1993 at the earliest, since we have abandoned the 

Saturn V program [2]. 

Although the Soviets do not have, as of now, an operational 

space shuttle, there are space experts who think that the USSR could 

launch a shuttle within the next twelve months. In 1983, after the 

splashdown of Cosmos 1445, the U.S. Department of Defense 

announced that the Soviets were pursuing a two-pronged program 

that included a Columbia-sized shuttle and a smaller space plane. 

This statement was partially substantiated when, in 1987, the USSR 

officially announced that they were pursuing aspace shuttle 

program. It is of further interest to note that the Soviets have 

improved upon our shuttle design. They have installed a set of air­

breathing jet engines wh ich will allow cosmonauts to maneuver 

their vehicle during the landing phase and, if necessary, to fly to an 

alternate landing strip. Even though it is unclear that the USSR is 

actually developing a smaller space plane, Jurgen Esders, a West 

German member of the European Parliament, thinks that the Soviets 

will launch aspace plane in the near future. 

Additional Soviet plans include: probes to asteroids, Venus, 

the Martian moons, and to the surface of Mars itself; permanently 

manned space stations; and colonization of both the moon and Mars. 

We could overlook the Soviets' present initiatives, impending 

developments, and plans for the future. We may speculate that the 

Soviet economy cannot support such an aggressive program, and that 

the U.S. will eventually regain its leadership role in space. But 
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Mikhail Gorbachev provides motivation for us to think otherwise. He 

gives the Soviet space program a high priority when he states, "We 

do not intend to slacken our efforts and lose leading positions in 

space exploration [2]." 

Why have we fallen behind? What is different now, than during 

the Apollo era? It is possible that the leadership provided by 

scientist Roald Z. Sagdeyev, head of the Soviet Institute of Space 

Research (known as IKI), is responsible for their lead in almost all 

areas of space exploration with the notable exception in electronic 

technology [1]. However, another possible answer lies in the change 

of attitude within the U.S. aerospace community since the time of 

the Apollo program. This change of attitude is reflected in a 

quotation appearing in the Boston Globe on August 4th, 1987, fram 

the outgoing president of Draper Laboratory, Robert Duffy, as he 

described earlier times at the lab, " ... days where technical 

competence, team spirit, and partnership between sponsor and 

performer were viewed as the way to get tough, new, demanding 

jobs done [3]." Also, in our quest to fulfill President John F. 

Kennedy's goal, " ... to put a man on the moon by the end of this 

decade," the aerospace community was a team. We were dedicated 

to a common purpose and were therefore, pursuing a higher common 

ground. Today, we need to regain this attitude of team cooperation. 

The objective of this attitude is to foster and promote an 

atmosphere of open-mindedness which allows all appropriate 

professionals to contribute. It is not an attitude which implies 

17 



incompetence nor outmoded methods, but rather an attitude which 

seeks to go forward and contribute to a higher common goal. It is 

my intention to foster this attitude among the appropriate agencies 

that develop and implement general perturbation theories for NORAD. 

We need to listen to new ideas, new information, and better ways of 

doing business; and then we must exploit these new technologies 

with vigor. It is with this attitude that I pursue this thesis. 

The specific objective of this thesis is to describe the 

analysis, software development, and testing necessary to 

incorporate the NORAD SGP, GP4/DP4 and HANDE general 

perturbation theories into the Draper Laboratory modified Goddard 

Trajectory Determination System (GTDS) orbit computation program. 

The resulting software capability will provide a unique environment 

for comparing the NORAD GP theories with conventional Special 

Perturbations and with the comprehensive Semianalytical Satellite 

Theory previously developed at Draper Laboratory. 

1.2 Need for an Independent Analysis 

There are at least five major factars which influence the 

performance of an orbit determination system. According to a 1976 

memo for record, written by Dr. H. B. Wackernagel, then, of the Space 
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Computation Center (SCC1) Development Division, four of these 

factors include [34]: 

1. The completeness and mathematical rigor of the 

perturbation theory. 

2. The models used to approximate the physical world 

including geopotential and atmospheric density. This 

factor also includes the mathematical models of the 

tracking data and the tracking data error statistics 

assumed in the orbit determination data processing. 

3. The observational data, in terms of the intrinsic quality, 

as weil as their distribution in time and space, and their 

quantity. 

4. The available computing hardware, in terms of precision, 

quality, and storage capability. 

The fifth significant factor is the total number of objects which 

must be supported by the available tracking sensors and computing 

hardware. The following paragraphs take a critical look at each of 

these factors as they apply to NORAD's orbit determination system. 

NORAD uses both general perturbation (GP) and special 

perturbation (SP) theories. (See Appendix A for an overview of 

general and special perturbation methods.) The vast majority of 

The SCC is now the Space Surveillance Center [SSC] [4]. 
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NORAD's tasking utilizes GP theories, and therefore, this discussion 

will focus on those GP theories. (See Section 2.1 for a detailed 

review of NORAD's GP theories.) The most current low altitude 

model is the Cranford (1970) GP4 theory. NORAD defines low 

altitude, or near-earth objects as those having aperiod less than 

225 minutes and high altitude or deep space, as those objects having 

periods greater than or equal to 225 minutes [5]. This theory 

incorporates the J 2 , J 3 and J 4 [5] zonal harmonics coupled with 

certain second order secular terms of the geopotential [6]. The 

atmospheric density is represented by apower density function [7]. 

The most current deep space GP theory is the Hujsak and Hoots 

(1977) DP4 theory. This theory is an extension of the GP4 theory 

with a more sophisticated gravitational model which includes --

additional first order lunar and solar terms. The DP4 theory also 

includes twelve hour high eccentricity and twenty-four hour 

tesseral and sectoral resonance terms. Although sections 2.1.2 and 

2.1.3 present a detailed synopsis of GP4 and DP4 capabilities, a 

critical look at the limitations of these theories can provide insight 

for potential improvements. 

A major drawback of both of these theories is the lack of 

flexibility within their computer code [8]. In other words, if you 

want to incorporate additional geopotential effects, or perhaps new 

atmospheric effects, both GP4 and DP4 would require extensive 

modifications. This point is clearly supported by the fact that it has 

taken approximately fifteen to twenty years since GP4 and DP4 
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became operational, to introduce NORAD's new HANDE model which is 

planned to be operational in the early 1990's [9]. 

Another limitation of both of these theories is that they are 

tailored to specific classes of orbits [8]. Although these classes 

may encompass many objects of concern, there is a significant loss 

in accuracy when looking at other classes of orbits. (See section 

2.1.2 for a detailed example.) This limitation is primarily due to the 

gravitational effects which the NORAD GP theories neglect. These 

include [8]: 

1. The m-daily effects due to non-resonant tesseral 

harmonics. 

2. The short-periodic effects due to: low degree and order 

tesseral harmonics; and lunar-solar point mass 

perturbations. 

3. The long-periodic and secular effects due to higher order 

zonals, resonant tesseral harmonics, and higher order 

lu nar-solar terms. 

It is important to both understand what these effects are, and the 

significance of neglecting these effects. To gain an understanding 

of these concepts, I will present a brief synopsis of a 1978 

memorandum written by Dr. Paul Cefola, to W. G. Denhard, then, 
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Department Head of Air Force Programs at Draper Laboratory. The 

synopsis begins with Kaula's potential [10]: 

N I I I _ 
U = ~ l(~e) 1 1 F M(i) 1 Glpq(e) Slmpq (00, M, n, e) (1.1) 

1=2 m =0 p =0 q =--

where: a, e, i, 00, n, M = classical orbital elements 

and 

GM (e) = polynomials in the eccentricity 

F,mp (i) = polynomials in the eosine of the orbital inclination 

e = Greenwich hour angle 

and 

[
Clm for (I - m) even ] 

Slmpq = _ S Im for (I _ m) odd cos [(I - 2p)w + (I - 2p + q)M + (n - e)m] 

[
SI for (I - m) even] 

+ CI: for (I _ m) odd sin [(I - 2p)w + (I - 2p + q) M + (n - e)m] (1.2) 

The zonal harmonics, J 2' J 3"" commonly appearing in the NORAD GP 

theories correspond to the (C, S) in equation (1.2) as folIows: Im 
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The m-daily effects due to non-resonant tesseral harmonics 

occur when the following conditions are met in equation (1.1): 

m -:/:.0, (I - 2p + q) = ° and, 

(I - 2p) Öl + (I - 2p + q) M + (h - ä) m-:/:.O (1 .3) 

When equation (1.3) is substituted into equation (1.2), the resulting 

argument of the trigonometrie terms is: (I - 2p) ro + m (Q - e). Thus, 

the Greenwich ho ur angle, e is the fastest variable for this subset , 

of the Slmpq terms. The name, 'm daily,' comes from the fact that 

these terms repeat m times per day. Cefola references the 

following table2 of periodic errors, (See Table 1-1) or m-daily 

effects for low altitude orbits, which he confirmed as part of a 

research project at MIT in 1979. The significance of neglecting 

these m-daily terms in a batch least squares orbit determination 

process is that the observation span must be at least several times 

the neglected period in order to obtain an accurate solution. Thus, 

the truncation of the satellite theory can limit the ability of the 

orbit determination process to generate an accurate orbit prediction 

from a short are of observation data. 

2 This table was originally generated by Dr. Hunt Small at Lockheed 
Missiles and Space Company. 
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Table 1-1. Maximum m-daily Errors (meters) 

Harmonie Radial Cross-Track ln-Track 

J 22 260 790 
J 31 300 600 
J 32 65 130 
J 33 75 150 
J 41 225 590 
J 42 90 270 
J 43 75 210 
J 44 40 100 

Geopotential tesseral short-periodics occur when the 

following conditions are met in equation (1.1): 

m :;C 0, (I - 2p + q) :;c 0 and, 

(I-2p)ro+(1-2p+q)M+(Q-8) m:;c 0 (1.4) 

With this combination of indices, the argument of the trigonometrie 

terms in equation (1.2) becomes a linear combination of the satellite 
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mean anomaly and the Greenwich Hour Angle. The Harmonic Analysis 

Program [11] results suggest errars fram neglecting these terms in 

the 100-200 meter range fGr tesseral harmonics of degree and order 

up to three for low altitude orbits [12]. This analysis is further 

supported by the work of Kaniecki (1979) [13] and Proulx, et al [14]. 

The impact of neglecting the tesseral short-periodics is less severe 

than neglecting the tesseral m-dailies. This is due to generally 

higher frequencies and smaller magnitudes associated with the 

tesseral short-periodics. 

The lunar-solar short-periodics are important for high altitude 

orbits. For example, the lunar-solar short-periodics include the 

dominant short periodic motion in the semimajor axis for the 

geosynchronous equatorial orbits. 

Long-periodic and secular (zonal) terms result when m = 0, and 

(1-2p+q) = 0 in equation (1.1). Therefore, these terms have no 

dependence on either the satellite mean anomaly or the Greenwich 

Hour Angle. Zeis investigates the effects of neglecting odd zonal 

harmonics J 5 - J g , for medium altitude orbits near the critical 

inclination (wh ich is == 63.43 degrees) and shows that the 

eccentricity errors are quite significant without these harmonics 

[15]. Also, Mueller [16] shows that neglecting the long-periodic and 

secular zonal terms with degree greater than five (Mueller's case 

was J 6 through J18 ) may cause positional errars on the order of 500 

to 1000 meters after just ten revolutions of a sixteen 

revolutions/day satellite. 
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Tesseral resonance terms result when the following conditions 

are met in equation (1.1): 

and (I - 2p) w + (I - 2p + q) M + (0 - e) m _ 0 (1 .5) 

This condition occurs when the satellite mean motion is some 

multiple of the Earth's rotation rate. This is exactly the case for 

such important orbits as the twelve hour, high eccentricity Molniya 

orbit and the synchronous equatorial orbit. 

Higher order long period lunar-solar terms are likely to have a 

noticeable impact at geosynchronous and higher altitudes. 

In summary, the current NORAD GP theories obviously can be 

improved. In all fairness it should be noted that the driving force 

behind the SG P (1966), GP4 (1970) and DP4 (1977) theory 

developments was processing efficiency. Run time was minimized 

to allow processing of more element sets at more frequent time 

intervals. Additionally, an assumption was made that by minimizing 

run time, there would be more CPU time available for more frequent 

element set update. Perhaps this assumption is not necessarily 

correct. By improving the current prediction capabilities of the 

NORAD GP theories, the required tasking frequency may actually 

decrease. The question remains as to what price would have to be 

paid to make such improvements. For example, there would be value 

in determining how much more computational run time one would 
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incur for a corresponding change to improve a theory's accuracy. It 

would also be worthwhile to investigate an alternative theory which 

would incorporate desired improvements and be capable of adopting 

upcoming changes. 

The second factor to examine in the overall orbit 

determination system is the physical models used to approximate 

the real world. The following development will look at both the 

geopotential models and atmospheric density models which NORAD 

uses, and other models which are available in the aerospace 

community. 

According to NORAD's 1982 sec Mathematical Foundation Text 

[17], the sce has four available geopotential models. Briefly, these 

models include: a World Geodetic System (WGS) 72 geopotential 

model truncated to the eighth order and degree, the Naval Weapons 

Laboratory (NWL)-8C twelfth order zonal and nonzonals as derived by 

Kozai, a sixteenth order model (unspecified), and the Goddard Earth 

Model GEM 2 coefficients (1972) [17]. 

Since the preparation of the see specifications, the 

development of geopotential models has continued. As of September 

1982, accuracy tests on the most recent GEM gravity models for the 

representation of the Earth's gravity field, showed that there was 

steady improvement in these models with time [18]. The accuracy of 

determining the spherical harmonie coefficients of the Earth's 

---~ gravitational field was as folIows: 100% accuracy for n = (2-6), 90-
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99% for n = (7-10,) 55-80% for n = (11-14), and less than 50% for n 

greater than 15 [18]. Some of these GEM models are based solelyon 

satellite observational data. For example, the GEM9 (1978) gravity 

model is based on optical, laser and electronic observations taken on 

thirty-one satellites [19]. Other gravity models combine satellite 

observation data with surface gravimetry. The GEM10B (1978) is a 

gravitational model complete to degree and order thirty-six, and is 

based on camera, laser and radio-frequency tracking data from 

thirty satellites; and surface gravity measurements, in the form of 

1654 five degree by five degree mean gravity anomalies and 1000 

GEOS-3 altimetry passes [20]. Furthermore, a new gravity model 

GEM-L2 (1985), uses a combination of GEM9 data and extremely 

accurate, two to five centimeter precision, laser ranging fram 

NASA's laser Geodynamics Satellite LAGEOS. The use of the GEM-L2 

model yields smaller LAGEOS positioning errors. Specifically, using 

the GEM9 model would yield one meter errors, but the use of GEM-L2 

decreases the errors to approximately twenty-five centimeters [21]. 

There also exists other experimental GEM models, such as the 

GEM 1 oe, which is complete to degree and order 180 [20]. Of these 

models, GEM 10B is considered desirable for low altitude cases and 

GEM-L2 is desirable for the high altitude orbits [22]. 

The WGS 72 model was the result of a major DOD effort that 

included five years of data collection within the DOD and scientific 

community [23]. The model includes twenty-fourth degree and order 

geopotential harmonics, Doppler and optical satellite observations, 
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.-
surface gravity data, and astrogeodetic data available through 1972 

[23]. Since the 1972 effort, a new WGS model has been under 

development. This model is an improved 000 model and is 

designated as the WGS 84 model. Table 1-2 presents a summary of 

differences between WGS 72 and WGS 84 ellipsoid parameters. 

Table 1-2. WGS 72 and WGS 84 Ellipsoid Parameters 

ELLIPSOID P~n:rERS NOTATION 1Ins 72 1'r.S 84 DIFFERFN:EA 

Sf1.IIMAJOR JlXIS a 6378135 m 6378137 m 2 m 

FlJ\lTam~ f 1/298.26 1/298.25722356J 0.J121057 x 10.7 

m;uwt VELOCITY '" 7292115.147 x 10·llrad 5.1 7292115 x 10·11rad 5.1 ·0.147 x 10·Urad ,-1 

SOCOND DOOREn ZONAL ez,o ·484.1605 x 10.6 ·484.16685 x 10-6 -0.00635 x 10-6 

GRAVITATI~L QON. Q.I 3986008 x 108 m3 5. 2 3986005 x 108 m3 s·Z .J x 108 m3 s·Z 
STANr 
(HI\SS OF EARlll' S 
A1HJSPlIEIlE INCLUlEJ) 

GRAVITATIONAL CON· GI' 3986005 x 108 m3 5. 2 3986001.5 x 108 mJ s·2 .3.5 x 108 m3 s·Z 
STAAT 
(mll ruf ~IASS OF 
EARTII' S A11.lJSPIIERE) 

AIIGS 84 mws ~.GS 72 

Future developments could significantly enhance all of the 

geopotential models. In the 1990's the U.S. Geopotential Research 

Mission (GRM), wh ich includes two satellites in a 160 kilometer 
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circular polar orbit, may provide a dramatic breakthrough in gravity 

field modeling [20]. 

Although all of these advances in geopotential study may not 

be applicable nor useable in NORAD's operations, it may be prudent to 

investigate what information can be of use. Of course it would be 

necessary to evaluate cost tradeoffs in terms such as computational 

complexity versus increased accuracy as weil as the overall impact 

on operations. 

The current atmospheric density model of GP4 and DP4 is 

based on the work of Lane (1965) and assumes a static, nonrotating, 

spherically symmetrical atmosphere that is modeled with apower 

density function. (See section 2.1.2 for details.) NORAD's proposed 

HANDE model makes a significant improvement to the density model, 

by incorporating a dynamic atmosphere, as defined by Hoots and 

France (1987). (See section 2.1.4 for details.) It appears that HANDE 

will be able to incorporate future atmospheric developments. This 

is significant because the 1986 Presidential Commission on Space 

anticipates, as a result of our upcoming space station, projected for 

1994, that solar studies will reveal more complete information on 

the solar cycle and solar flares [24] which will significantly impact 

the potential accuracy of perturbation theortes. 

The third factor which plays a crucial role in the orbit 

determination system is the observational data.· Observational data 

availability and accuracy has been enhanced by the recent NO RAD 
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Space Sensor Network updates: Cobra Dane and Pave Paws Phased 

Array Radars, and the Ground-based Electro-Optical Deep-Space 

Surveillance (GEODSS) system [25]. Also, since 1976, the deep space 

radars, specifically, Millstone Hili Radar and Altair have been 

upgraded [26]. Today, the sensors of the NORAD Space Sensor 

Network3 include the following [17]: 

1. The Navy Space Surveillance System (SPASUR) 

This system includes nine field stations within the continental 

United States, specifically: three transmitter sites, two 

high-altitude receivers, and four low-altitude receivers. 

2. The Air Force SPACETRACK 

This system consists of numerous radars, Baker-Nunn cameras, 

and a Ground-based Electro-Optical Deep Space Surveillance 

(GEODSS) system. Specific radar types include: Cobra Dane 

and Pave Paws phased array radars, detection radar fans, 

tracking radars, and a Perimeter Acquisition Radar (PAR) 

from the cancelled Safeguard ABM system. 

3. Co-Operating Sensors 

These sensors include: the Eastern Test Range tracking radars, 

Smithsonian Astrophysics Observatory Baker-Nunn cameras, 

3 The NORAD Space Sensor Network was formerly the Space Detection and 
Tracking System (SPADATS) [4]. 
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Space and Missile Test Center tracking radars, and the 

Pacific Missile Range tracking radars. 

4. Other Sensors 

This group is comprised of: Over the Horizon (OTH) tracking 

radars; the USAF Satellite Control Facility; NASA tracking 

networks and the Worldwide Satellite Observation Network; 

other tracking radars; and electro-optical sensor sites [27]. 

The location of each Network component is listed in references [4] 

and [27]. 

The fourth factor to evaluate in the NORAD system is computer 

hardware. Presently, the SSC operates on the Honeywell 6080 

computer. According to Lt Col Sundberg, Headquarters (Ha) Air Force 

Space Command (AFSPACECOM), the SSC may upgrade to the IBM 

3083 in the 1990's [28]. Ford Aerospace Corporation personnei, who 

are presently writing the new SPADOC 4B computer code use the IBM 

3083 computer. Their software is compatible with the CSDL IBM 

3090 computer. This potential upgrade of computer hardware is 

significant because of the increased processing capability of the IBM 

3083 versus the Honeywell 6080. This hardware will provide more 

available CPU time with improvements to the existing GP theories. 

The final factor, and perhaps most difficult to control, is the 

total number of objects which NORAD must· track. NORAD is 

responsible for both maintaining general perturbation element sets 
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on all man-made space objects, and special perturbation element 

sets on specified support missions. For the purposes of tasking 

support, all missions are assigned to one of the following areas: 

catalog maintenance, deep space or special missions. Catalog 

maintenance is the routine task of maintaining general perturbation 

element sets on all satellites in earth orbit [17]. This is not a 

trivial matter, because as of 13 August, 1987, NO RAD was 

maintaining a catalog of over 7000 objects [29]. Furthermore, 

NORAD has stated in their Space Computation Center, SCC, 

mathematical foundation reference text, "The catalog of satellites 

has grown too large to continue using the early operational concept 

of allowing all sensors to observe all satellites. The finite 

capabilities of the SPADATS (now, the NORAD Space Sensor Network) 

sensor system must now be used in a systematic and coordinated 

manner to insure that the large number of satellites are all observed 

at a frequency adequate to support orbit element maintenance. 

Satellites will become lost if not enough observations are obtained 

or, if too many observations are collected, the computer center 

becomes saturated [17]." Deep space missions are simply those 

missions associated with satellites having apogees greater than 

3000 nautical miles but still requiring GP element sets. Special 

missions include: 

special activities. 

new launches, maneuvers, breakups, and other 

Typically, these missions require a much greater 

number of observations due to the requirement to generate special 

perturbation element sets [17]. 
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Oue to the extremely large number of catalogued satellites, 

relative to the special missions, the key issues are catalog 

maintenance and deep space missions. Specifically, according to Lt 

Col Eric Sundberg, "With 7000 objects our system is close to being 

fully loaded in terms of available sensor resources and data 

processing capacity in Cheyenne Moutain. This problem will become 

critical in the near future because there is a reasonable probability 

the catalog will have to double or tripie in size within the next few 

years [29]." This concern is further developed in a paper entitled, 

"The SMART Catalog," which was presented at the AAIA/AAS 

Astrodynamics Specialist Conference, Kalispell, Montana, 10-13 

August, 1987, by Major Oavid Cooke, also of HQ AFSPACECOM. In this 

paper he states that the USAF Space Command is exploring a new 

concept called the SMART Catalog, which is designed to improve 

satellite tracking efficiency and expand the current catalog to 

include very small debris, on the order of a few centimeters, or less. 

The concern over very small debris was highlighted on space shuttle 

flight STS-7, where a 0.2 mm fleck of aluminum oxide paint made a 

small crater in the orbiter's window. The magnitude of the space 

debris problem has increased tremendously due to four major 

satellite breakups which have occurred since September 1985. 

There were two planned low altitude breakups and two unintentional 

breakups at high altitude. The two planned breakups were the 

Solwind ASAT experiment and the Delta 180 Strategic Oefense 

Initiative (SOl) experiment [30]. The Solwind ASAT experiment was 

actually the elimination of Air Force satellite P78-1. An F-15 
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fighter plane launched a miniature homing vehicle [25] to destroy the 

satellite which was in a low, (514 - 541 kilometer), polar orbit [31]. 

The SOl Delta 180 experiment was aspace intercept and collision 

test between the second and third Delta stages that made head-on 

contact at a closing speed of 1.8 miles per second. The experiment 

created two satellite debris clouds that passed through each other 

and entered into orbits which centered on the original orbits of the 

two stages [32]. 80th of these breakups have almost entirely 

reentered due to their relatively low altitude. However, the main 

pressure vessel breakup of the French Ariane rocket body, and the 

spontaneous booster failure of the Soviet Cosmos 1813 satellite, 

have created orbiting debris clouds that will remain in orbit for 

years to come since both of these bodies are at much higher 

altitudes. The impact of this additional debris has been to increase 

NORAO's Average Oaily Observations (08S) from thirty to forty 

thousand, to over 60,000 [30]. 

The upcoming Stategic Oefense Initiative (SOl) program may 

further challenge NORAO's present capabilities. SOl is a 

multilayered, multitechnology approach to ballistic missile defense 

(8M 0) which shows the promise of achieving the capability to 

intercept a high percentage of offensive nuclear weapons after they 

have been launched at the U. S. This approach includes attacks 
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against ballistic missiles in each phase of their flight with weapons 

that destroy these missiles using various technologies [33]. As a 

component of this BMO, SOl could require hundreds of orbiting 

surveillance and weapons platforms. NORAO is the only organization 

with any experience in maintaining the orbital elements of large 

numbers of space objects and it is natural to expect that deployment 

of SOl will result in more strain on NORAO's capabilities. 

The overall impact of the increased number of objects tracked 

by NORAO will test NORAO's present and near future capabilities in 

terms of: sensor tracking requirements, orbit determination 

accuracy, computational run time, and computer storage 

requirements. Since this increase in objects is essentially a given 

parameter, attention must therefore focus on the other factors for 

possible improvements to NORAO's orbit determination system. Or. 

Wackernagel summarizes the criterion for selecting the proper 

focus. He states that normally one of the factors which influence 

the performance of an orbit representation module is dominant 

(least accurate), and therefore determines the overall performance 

of the module [34]. With this perspective in mind, and after taking a 

critical look at these factors, it appears that NORAO has made or 

planned for significant improvements in the quality and quantity of 

observational data, computer hardware capabilities, and the 

proposed dynamic atmosphere within the HANOE model. However, it 

seems that improvements can be made in the area of understanding 

the limitations associated with the GP theories themselves. In light 
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of these considerations and impending future developments, it would 

seem prudent to accomplish an independent analysis of NORAO's GP 

theories to both verify present capabilities and examine possible 

improvements to these theories. This analysis should provide the 

tools, resources, and data needed to evaluate applicable tradeoffs. 

1 .3 Overview of Thesis 

The overall objective of this thesis is to accurately 

incorporate the SGP, GP4/0P4, and HANOE general perturbation 

theories into the Oraper Laboratory modified Goddard Trajectory 

Determination System (GTOS) orbit computation program. 

Additionally, this thesis will analyze both low altitude and 

geosynchronous test cases in order to provide examples of each 

theory's orbit determination accuracy. Fu rthermo re, this 

incorporation of GP theories into the GTOS program will allow for 

rigorous comparison with both the GTOS Cowell-based special 

perturbation theory (SP) and the Oraper Semianalytical Satellite 

Theory (OSST). Such a comparison is not presently possible within a 

single existing computer program with consistent force models and 

coordinate systems. A comparison with OSST is of special interest 

because the OSST is [8]: 

1. Highly flexible, and easy to modify at the time of 

application. 

2. Computationally more efficient than SP theories. 
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3. Almost as accurate as SP theories. 

4. A possible alternative to GP theories. 

5. A possible supplement to the present NORAO GP theories. 

Chapter Two provides a review of both NORAO GP theories and 

GTOS capabilities including the OSST. Additionally, this chapter 

explains the technical differences between the NORAO and GTOS 

coordinate frames. 

Chapter Three is a detailed description of the actual 

incorporation effort. The overall design approach is to incorporate 

the NORAO GP computer code into the existing GTOS ephemeris 

generation architecture. This architecture includes: a one time 

initialization, an initialization which is dependent upon the epoch 

orbital element values, and output at arequest time. Eleven 

interface subroutines were created, thirty-two GTOS subroutines 

were modified and four SPAOOC subroutines, aside from the SPAOOC 

error and minor utility routines, were modified to complete this 

incorporation. In addition, forty-seven SPAOOC subroutines and 

block datas were compiled without modifications and linked with 

GTOS. In order to establish accurate benchmark test runs and create 

a credible analysis capability, an intentional effort was made to 

minimize modifications to the NORAO-based software. Chapter 

Three follows the standard software documentation outline: inputs, 
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processing, and outputs. Within the discussion of processing, the 

functions are presented in the order that they would occur in a GP 

differential correction run. 

Chapter Four presents orbit generator cases for each GP 

theory. The first three sections of this chapter compare orbit 

generator test cases, supplied from both NORAO and Ford Aerospace 

Corporation, to the results generated by the incorporated orbit 

generators. The results of these comparisons provide strong 

confidence in the accuracy of this incorporation. Additionally, 

Chapter Four analyzes the partial derivatives in the state transition 

matrix. A single-sided finite differencing technique is used to 

establish confidence in the accuracy of the partial derivative 

incorporation. 

Chapter Five presents differential correction test cases for 

both geosynchronous and low altitude cases. The analyses 

incorporate both simulated and real data. Actual NORAO tracking 

data is used for the low altitude NSSC 10299 satellite; both 

owner/operator supplied precision ranging data and NORAO tracking 

data are used for the geosynchronous TELESAT ANIK 02 satellite. 

Chapter Six summarizes the newly developed analysis 

capability and test case results. This chapter also presents 

conclusions and ideas for future research and analysis. 
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Appendix A provides an overview of general and special 

perturbation methods as weil as the advantages and disadvantages 

of each of those methods. 

Appendix 8 presents the mathematical equations of the 

SPADOC subroutine G2MEOE by theory type. The G2MEOE subroutine 

calculates partial derivative terms, including the state transition 

matrix. Within this subroutine, each NORAD theory type yields 

slightly different expressions for some of the elements of the state 

transition matrix. 

Appendix C is a discussion of a mathematical comparison of 

the GTDS 8 2 matrix equations and the corresponding SGP theory 

partial derivative equations as derived in Appendix 8. This 

comparison highlights the fact that the SGP theory equations, with 

the exception of those terms wh ich are dependent on the derivative 

of the mean longitude at epoch, match precisely the GTDS 8 2 matrix 

equations. 

Appendix 0 provides some background on finite differencing 

theory. This appendix supports Chapter Four. 

Appendix E is a review of the generalized method of averaging. 

This method is an integral part of the DSST, as weil as NORAD's DP4 

and HANDE theories. 
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Appendix F presents user guide data: revisions and additions 

to the GTDS Keyword Cards and a sampie input deck for HANDE and 

DP4 differential correction runs. 
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Chapter 2 

BACKGROUND 

The NORAD GP theories consist of a conglomeration of efforts 

and modifications which have occurred over the last twenty to 

twenty-five years. As a result of this development it is of the 

utmost importance to identify element sets or states by their 

respective theory type. This critical point is alluded to by Felix R. 

Hoots and Ronald L. Roehrich in their opening paragraph to 

Spacetrack Report Number Three, " ... one must be careful to use a 

prediction method which is compatible with the way in which the 

elements were generated [5]." A further distinction to be aware of 

is NORAD's use of a unique coordinate frame. Additionally, the 

definition of the term "mean", will vary with each NORAD theory 

type and with the GTDS program. One can draw conclusions and do 

analyses only with these points in mind. This chapter will explain 

these inherent differences with a thorough review of NORAD's GP 

theories, the GTDS program at Draper Laboratory (CSDL), and the 

appropriate coordinate frames. 

2.1 NORAD General Perturbation Theories 

NORAD presently uses three GP theories to update the space 

catalog: SGP, GP4, and DP4. In the early 1990's, Space Command 
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plans to convert to a new, improved and more accurate ephemeris 

prediction model called HANDE [9]. Presently, Ford Aerospace 

Corporation (FACC), Colorado Springs, Colorado, is developing Space 

Defense Operations Center (SPADOC) 4B Fortran source code for all 

of these general perturbation theories for the USAF Electronic 

Systems Division (ESD), Hanscom AFB, Massachusetts. Although code 

is also being written for NORAD's Semianalytical Satellite Theory 

(SAL T), no benchmarks are as of yet available and, accordingly, 

NORAD's SAL T theory will not be discussed. 

2.1.1 SGP Satellite Theory 

The Simplified General Perturbation (SGP) theory was 

developed by C.G. Hilton and J. R. Kuhiman (1966) and is used for 

near-earth satellites [5]. As a historical note, SGP is actually a. 

truncated form of AGP, which was a more comprehensive GP theory 

developed in 1961 by Aeronutronic, a division of Philco-Ford 

Corporation, Newport Beach, California. This Aeronutronic Complete 

First-Order General Perturbations (AGP) theory included: first and 

second order secular terms, and long and short periodic expressions 

of first order with coefficients of second, third, and fourth zonal 

harmonics (J 2 ,J 3 andJ 4 ). AGP was modified for use where 

maximum computational efficiency along with moderate prediction 

accuracy was needed [35]. As an example, when SGP is used to 

process observations, there is a computational speed advantage of 
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fifty to one over that of special perturbations (SP) [34]. This is due 

to the small number of observations included in a typical GP 

differential correction [36], as contrasted with the very large 

number of integration steps required for SP over a typical 

observation span. As a rule-of-thumb, SP processing requires fifty 

to one hundred steps per revolution. So, SP might require several 

thousand integration steps over a typical GP observation span [8]. 

This modification of AGP was called Simplified General 

Perturbations (SGP) and was optimized for low eccentricity and non­

equatorial orbits. Specifically, the SGP perturbative terms are: the 

zonal harmonics J 2 and J 3 , secular and long periodic terms 

truncated to the square of the eccentricity O( e2 ), and a few selected 

short period terms from the AGP theory [37]. The SGP theory uses a - .... 

simplification of the work of Kozai (1959) for its gravitational 

model [6,9]. This implies, and indeed the actual Fortran code 

verifies that SGP uses the Kozai mean motion wh ich is defined as 

[38] : 

n = n. + :: (nol ~- ~ sin' i) .J1-e' (2.1 ) 

where: n = Kozai mean motion 

no = unperturbed mean motion 

p = sem i-parameter 

= inclination 

e = eccentricity 
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A 2 is taken to be of the fi rst order of small 

quantities, and is equivalent t0 1 (~J2)' 

Alternately [39]; 

Since 

Kozai mean motion = Brouwer mean motion + Mo 

This alternate form of equation (2.1) must be considered in the 

initialization of elements which come from the NORAD Historical 

Data System and are input into the GP4 model. This relation is 

particularly important to make an accurate "a" to "n" transformation 

in the subroutine RESSGP2. 

SGP also assumes the drag effect on mean motion to be a 

quadratic in time. Specifically, this drag assumption results in a 

cubic variation in the secular longitude with time. Furthermore, the 

drag effect on eccentricity is modeled in such a way that perigee 

height remains constant [5]. Lastly, the SGP model defines a "mean" 

element set as one having the gravitational perturbations removed 

1 Note: From Brouwer (1959) [3] 2 2 - ("3 A 2) = - (J 2 R) Where R = I, 

2 See Chapter Three for a complete description of the subroutine RESSGP. 
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[40]. The actual equations used in this theory are listed in reference 

[5]. 

2.1.2 GP4 Satellite Theory 

GP4 or SGP4 is a theory developed by Ken Cranford in 1970 and 

is used for near-earth satellites. This model is based on a 

simplified version of Lane's (1965) and Lane and Cranford's (1969) 

drag theory [6]. Lane (1965) developed the atmospheric model which 

assumes a static, nonrotating, spherically symmetrical atmosphere 

that is modeled with apower density function. Specifically, this 

function is: 

( q _ S)1: 
P = Po / - s (2.4) 

where: 

P = density at the radial distance, r 

Po = atmospheric density at the radial reference height 

qo = a geocentric reference distance 

r = radial distance to the satellite 
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The two parameters, "C and s are disposable parameters which 

appear as constants in the final integrated drag equations of motion. 

They are to be chosen to fit the power density function to the best 

available atmospheric data [7]. Lane and Cranford (1969) eliminated 

the small eccentricity and inclination divisor problem by developing 

drag equations that do not use the terms Si~ I or ! as coefficients 

[41]. The GP4 geopotential theory is based on a simplification of 

Brouwer's theory [42]. This potential includes the zonal harmonics 

J 2' J 3 and J 4' coupled with certain second order secular terms [6]. 

These higher order terms are based on the following criterion of 

Lane and Cranford (1969): terms contributing more than 600 meters 

in position error over a prediction span of at least ten days, will be 

retained3 [41]. 

Additionally, NORAD's adaptation of Brouwer's theory shows a 

strong dependency on low eccentricity. The following development 

[12] of the NORAD modifications to Brouwer's secular variations in 

the mean elements within the GP4 theory, provides an insight to this 

low eccentricity dependency. Brouwer's formulas for the secular 

variations are: 

I" = "mean" mean anomaly 

3 Of historical interest, is the fact that the GP4 theory is actually a sub set of an 

earlier theory, AFGP4, which included the zonal harmonics J 2' J 3' J 4 and J s 
[ 17]. 
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= 

" 9 = mean argument of perigee 

h" - mean longitude of ascending node 

Where: ,,= J (1 - e',2) and e = cos (' 
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ae = equatorial radius of the earth 

,,/ -6 '3 = 'Y311 

All single primed variables denote (secular + long periodic) terms. 

All double primed variables denote secular terms only. 

(NOTE: In Brouwer's original equations, 

no = Brouwer mean motion at epoch, however; within the GP4 

equations [5], Brouwer's mean motion is denoted by n" o. 

These formulas differ significantly with those of reference 

[40], however; the GP4 formulas can be obtained from Brouwer if: 

,,2 

1. Terms of 14 e are set to zero. 
",22 ,,/ 2. Polynomials appearing in the , and , 4 terms are 

evaluated with 11 set equal to one. 

Specifically, the truncated Brouwer equations are: 
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(2.8) 

(2.9) 

(2.10) 

The accuracy of these equations depends directly upon the 

smallness of the orbital eccentricity. 
,,2 

then e = .0004, and 11 = .9998. 

For example, if eil = .02, 

Thus, for the typical low altitude 

satellite, the approximation that 11 = 1 is valid. However, these 

approximations are applied to all satellite element sets that are 

generated by the GP4 theory. As another example, the Soviet Molniya 

satellite with an eccentricity of .7, yields, e',2 = .49, and 11 would be 

approximately .71. In this case, the approximations do not look quite 

as desirable [12]. This development has shown that GP4 produces 

optimum results only for low eccentricity orbits4 . 

Of additional interest are the GP4 equations which are used to 

recover the GP4 mean motion n" o and semi-major axis a" . from the 
0' 

4 Comparison with Brouwer [42] indicates that the GP4 J 2 short-periodic 

expressions are also truncated on eccentricity. 
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SGP element sets which are distributed by NORAD to the user 

community5 [5] : 

Finally6, 

Where: k e = 

n" -0-

a" -0-

(3 - cos2 i 0 - 1) 

(1 - e~) 

3 
2" 

(3 cos2 i 0 - 1) 

(1 - e~) 

3 
2 

and 

(2.11 ) 

(2.12) 

(2.13) 

(2.14 ) 

(2.15) 

(2.16) 

-vGM and G = Newton's gravitational constant 

M = mass of the earth 

5 In equations (2.11 through 2.14) a * denotes an SGP element. 
6 Equations (2.15) and (2.16) are of the Brouwer form, Le., short and long 
periodics are removed [ 41]. 
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The relations just presented are very important because the SGP "a" 

to "n" conversion algorithm, given in Spacetrack Report #5 [43], is 

not the same algorithm used in the SPADOC subroutine SGPINT. 

2.1.3 DP4 Satellite Theory 

DP4 or SDP4 is an extension of the GP4 theory and is used for 

deep space satellites [5]. This theory was developed by Mr. Richard 

S. Hujsak (1977) [44, 45]. DP4 incorporates all of the geopotential 

and most of the drag representation of GP4. Additionally, doubly­

averaged, first order, lunar and solar gravitational terms are added 

to the geopotential and drag effects [17]. DP4 also accounts for 

tesseral and sectoral resonances for twelve hour high eccentricity 

and twenty-four ho ur period near circular orbits [45]. A complete 

listing of the DP4 equations is available in reference [44]. The 

following synopsis of that paper will provide some insight with 

regard to these additional gravitational effects. 

First, it is important to note that Hujsak utilizes the 

generalized method of averaging in his development of the deep 

space equations. The objective of the generalized method of 

averaging is to eliminate fast variables, or high. frequency 

components fram the equations of motion? [46]. This elimination is 

7 Note: Any function contammg a fast variable will contribute short 
periodics to its system [47]. 
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desirable because the maximum step size wh ich can be used in the 

integration of a set of differential equations is constrained by the 

highest frequency within those equations. The· resulting averaged 

equations of motion can be integrated numerically or analytically 

with a much greater step size than with the original equations [44, 

48]. (See Appendix E for a more complete review of the generalized 

method of averaging.) 

Hujsak's paper analyzes two problems. The first problem is 

the four body: moon, sun, oblate Earth and satellite problem. The 

second is a resonance analysis of twelve hour and twenty-four hour 

period orbits. Throughout the entire development, the first order 

harmonie J 2 and the second order harmonics, J 3 and J 4' are 

included in the Earth's geopotential. In the four body oblate earth 

problem Hujsak applies three transformations to eliminate fast 

variables and obtain an analytic solution. 

In the first transformation, the dynamical system is a function 

of two fast variables, mean anomaly, M, and Greenwich sidereal 

time, e. These variables satisfy the conditions for the application of 

the method of averaging. (See Appendix E for a discussion of these 

conditions.) This transformation averages the potential, R, for the 

four body oblate earth problem. Where8 : 

(2.17) 

8 The DP4 theory considers all perturbations as being uncoupled. 
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Rz = zonal potential (truncated after J 4 ) 

Rv = tesseral harmonics 

RL = lunar potential 

Rs = solar potential and, 

averaging, "< >,li is defined as: 

2n: 

(g) = -21 f (g)dx 
x 1t o (2.18) 

At this point, the singly averaged potential, (R) M.a is transformed 

twice more to remove the mean anomaly of the moon, 'YL , and the 

mean anomaly of the sun, 'Ys . The resulting triply transformed four 

body oblate Earth dynamical system is solely a function of variables 

which vary slowly with time. The solution of this non-resonant 

system is obtained through analytical integration. 

The resonance analysis investigates both twelve and twenty­

four hour period orbits. The resonance condition exists when 

M == 28, or M == e. Again, the dynamical system is a function of two 

fast variables, M and e, however; this system does not satisfy the 

conditions for using the method of averaging. Therefore, Hujsak 

introduces two new variables, \ and "'2' which results in a new 

dynamical system that is a function of one fast variable, e, and is in 

a form which satisfies the conditions to apply the method of 

averaging. This change of variable is dependent upon the resonance 

conditions. Specifically: 

54 



when M == 29, \=M-2(Q-S) (2.19) 

when M _ e (2.20) 

As in the four body problem, Hujsak averages the potential, R, three 

successive times, to eliminate the fast variables, S, 'h and 'Ys The , . 

final dynamical system is a function of slow variables with the 

exception of n and A, which vary more rapidly. The final solutions 

are all obtained analytically except for the solutions of ri and i, 

which are obtained by numerical integration of the resulting 

equations [44]. 

2.1.4 HANDE Satellite Theory 

The HANDE model was developed by Felix R. Hoots (1983), 

Directorate of Astrodynamics, Space Command, Colorado Springs, 

Colorado, for both near earth and deep space satellites. The 

gravitational model includes the zonal harmonics J 2 of first order, 

and J 3 and J 4' of second order [49]. Additionally, HANDE includes 

the DP4 model for twelve hour and twenty-four hour resonances, as 

weil as lunar and solar gravitational effects. A significant 

improvement within this theory is found in the drag model which 

includes the effects of adynamie atmosphere [9]. Hoots and France 

(1987) define a dynamical atmosphere as any modern empirical 
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model which uses various observed solar and geopotential 

parameters as inputs to produce a varying atmospheric model [50]. 

While the HANDE theory does include a dynamic atmosphere model, it 

uses average values of Ap and F10. 7 throughout its intervals [50]. 

Therefore, HANDE does not actually model the short periodic 

variations in atmospheric density. Nonetheless, HANDE uses the 

Jacchia 1970 atmospheric tables for its dynamic atmosphere. These 

tables account for diurnal bulge as weil as solar and geomagnetic 

effects. Additionally, the HANDE atmospheric drag forces account 

for atmospheric rotation and atmospheric oblateness [51]. For a 

complete list of HANDE equations, see references [49] and [50]. The 

most current description of the HANDE theory is the 1987 article 

written by Hoots and France [50]. The following discussion is abrief 

overview of the most significant developments within that article. 

Within their paper, Hoots and France obtain an analytical 

solution for the motion of an artificial earth satellite under the 

combined influence of gravity and any dynamic atmosphere. The 

most significant development is the incorporation of a dynamic 

atmosphere, which includes dynamic variation due to solar activity, 

into the HANDE theory. The motivation for developing an analytical 

solution instead of a semianalytical solution, is that semianalytical 

methods solve the equations of motion by numerical integration. 

Therefore, an analytical method goes through an initialization 

section only one time, whereas a semianalytical method must 

reinitialize at each integration step. 
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The analytic theory begins with the equations of motion which 

include the gravitational harmonics J 2 , J 3' and J 4 and drag 

perturbations. The drag forces incorporate the rotational velocity of 

the Earth. Next, the generalized method of averaging is applied to 

obtain a transformation of variables wh ich eliminates the 

dependence on mean anomaly, the fast variable. As in DP4, Hoots and 

France average the gravitational and drag components of these 

differential equations. To do so, it is necessary to assume that drag 

effects, derived from a tabular atmosphere, are both continuous and 

periodic in the fast variable. This assumption is based upon the idea 

that since tabular data closely resembles analytical models, such as 

the exponential or power function, and since these analytical models 

satisfy the prerequisite conditions, so does the tabular data. The 

resulting integrals of the drag functions give the average drag 

effect over one period of mean anomaly. To facilitate the actual 

integration, they introduce a change of variable: 

where 

~ __ 3 

dM = (J (1 - e2
)) df 

(1 + e cos t) 

e = eccentricity 

f = true anomaly 

2 
(2.21) 

At this point, Hoots and France choose a Gauss Legendre quadrature 

to evaluate the drag integrals rather than an analytical integration. 
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This choice is significant because the algebraic formulation is 

independent of the density model chosen. Therefore, the HANDE 

theory maintains the flexibility to select both geopotential 

coefficients and a density model. Furthermore, the integration can 

be accomplished without using series expansions and consequently 

is valid for any eccentricity. Lastly, the quadrature evaluation is 

required only during initialization. 

formula used is: 

The actual Gauss-Legendre 

b 

I 2~ fg(f)df 
-b (2.22) 

where: 

b = the value of true anomaly where density has decreased 

by a factor of 100 from its value at perigee 

The value of b is determined as fallows: 

cos b = 
ae (1- e) - ßr 

ae (1 - e) + e ßr ' 
for ßr < 2ae 

cos b = -1 for ßr ;:: 2ae 

where a = semi-major axis 

e = eccentricity 
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and, 

L\r = altitude change from perigee required for a drop in 

density by a factor of 100 

q = perigee height above the flattened earth (km) 

The Ai coefficients were obtained by a polynomial fit to the Jacchia 

(1970) atmospheric tables. This fit was done for 882 degrees Kelvin 

exospheric temperature since Slowey (1979)[52] has shown this to 

be the mean temperature over the entire atmosphere during an 

average eleven year solar cycle. 

It is of further interest to note that the most dominant effects 

of drag and J 2 coupling can be included in the drag integrals. This is 

accomplished by using the osculating altitude, r', at each step in the 

quadrature. Where r' = r - 8r, and r is the osculating geocentric 

radial distance, and 8r is the geocentric distance to the flattened 

earth surface. 

Given this background on how to solve the drag functions, 

Hoots and France provide the results of an analytical solution to the 

transformed differential equations of motion. This analytical 

solution was obtained by treating the long-period gravitational 

terms separately from the remaining terms. Additionally, the 

resulting equations contain higher order derivatives, which are 
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obtained using a numerical technique that involves the use of a 

Chebyshev min-max polynomial. 

Hoots and France emphasize that the numerical differentiation, 

the quadrature, and the required atmospheric density values all 

occur during the initialization of HANDE. Predictions at later times 

are made with totally analytic formulas. 

The article concludes with an extensive orbit analysis between 

HANDE, SGP and an orbit based on an eighth order Cowell numerical 

integrator with a one minute step size. The atmospheric model used 

was the Jacchia (1970) model with a constant solar flux value of 

150 and a constant geomagnetic index of Ap = 4. The gravitational 

model included zonals through J 4 • A comparison of eighteen test 

cases, representing a wide range of altitudes and orbital 

geometries, indicated that the HANDE model had very good accuracy 

with an average RMS of 40 meters over a one day fit span. 

Their real data analysis analysis utilized five operational 

satellites and predictions were made over a twenty day span prior to 

their decays. Including all predictions, HANDE had an average 

prediction RMS (kilometers) of 49.306, SP had 53.750, and SGP had 

191.047. The results presented indicated that in areal world 

environment HANDE provides a significant improvement over SGP and 

is very competitive with special perturbations. Lastly, in the 

prediction mode, the theory is totally analytical and requires about 

one thousand words of computer storage space [50]. 
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2.2. The Goddard Trajectory Determination System 

The NORAD GP theories will be hosted in the Draper Laboratory 

modified Goddard Trajectory Determination System (GTDS) computer 

program. This incorporation will not degrade the operational 

performance of the GTDS program within the laboratory. 

2.2.1 Overall GTDS Capabilities 

The Goddard Trajectory Determination System (GTDS) is a 

multipurpose computer system designed " ... to provide operational 

support for individual Earth, lunar and planetary space missions and 

for the research and development requirements of the various 

projects of the NASA/Goddard Space Flight Center (GSFC) scientific 

community [53]." Aversion of GTDS is the operational orbit 

determination system of the NASA/GSFC, at Greenbelt, Maryland. 

Also, the GTDS algorithms form the basis for the operational orbit 

systems in the Global Positioning System Operational Control Center 

and the Air Force Satellite Control Facility Data System 

Modernization. The Charles Stark Draper Laboratory (CSDL) received 

an export Research and Development version of GTDS in 1978 [54]. 

Since that time, Oraper Laboratory has modified and created 

additional capabilities within the GTOS framework. The current 

capabilities of Oraper Laboratory's version of GTDS can be described 

in three parts. The initial capabilities, originating from NASA/GSFC 
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are described in the GTOS math specifications (1976). Additional 

capabilities are described in the GTOS Research and Oevelopment 

User's Guide for the Averaged Orbit Generator (1978) [55]. This 

document describes the capabilities which were developed at the 

Computer Sciences Corporation. Capabilities resulting from Oraper 

Laboratory initiatives are described in section 2.2.3. Throughout 

these descriptions it is of special interest to note the inherent 

flexibility of the GTOS architecture. 

As of 1978, GTOS was partitioned into the following programs: 

1. Ephemeris Generation Program (EPHEM) 

This program propagates the vehicle state and, optionally, the 

state partial derivatives from prescribed initial conditions over a 

given time span. Also, this program can selectively choose an 

orbital theory, ranging from a first-order analytic theory9 to a high­

precision Cowell-type numerical integration [53, 56]. The user 

selects the appropriate model and then inputs the following: the 

initial elements at epoch; coordinate system type; desired 

atmospheric model and; satellite area and mass parameters [57]. 

Furthermore, the state transition matrix can be generated by 

numerical integration of the variational equations or by a two-body 

analytic approximation. Ephemeris output is generated as the 

satellite state (position and velocity) referenced to an indicated 

9 This program has the option to seleet from either the Brouwer or Vinti 
analytie theories. 
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central body or to specified noncentral bodies. Additionally, 

satellite ephemeris files can be generated for subsequent use. 

2. Ephemeris Compare Program (COMPARE) 

This program compares two input satellite ephemeris files. 

The comparison can be specified over a particular arc including an 

arc of overlap between the ephemerides. The radial, along-track, 

and cross-track errors are output in tabular form to the printer 

[53,56]. The unit vectors for these errors are defined as follows [57]: 

Radial ~ r 
(2.26) = rrT 

Cross-Track t rx v 
= Irx vi (2.27) 

Along-Track t (r xv) x r 
(2.28) = I(r x v) x rl 

Printer plots of these differences and, Keplerian and equinoctial 

element histories and differences can be produced. 

3. Differential Correction Program (DC) 

This program estimates the satellite orbit and solve-for 

parameters. There are two types of solve-for parameters, dynamic 

and local. The dynamic solve-for parameters are those which are 

implicit in the equations of motion, such as the drag parameter or 
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the gravitational harmonie coefficients. The local solve-for 

variables are those which are implicit in the observation models 

such as the tracking station locations and observation or timing 

biases. Within this program all parameters are determined so as to 

minimize (in a Bayesian weighted least-squares sense) the sum of 

the squares of the differences between the observed and computed 

tracking data. Simultaneously, the solve-for variables are 

constrained to satisfy apriori conditions to within a specified 

uncertainty. Specifically, the user must supply these apriori 

conditions for a given solve-for parameter at a specified epoch. 

Both mean and covariance matrices are determined for the estimated 

parameters. Optional printer plots of observation residuals can be 

obtained. 

4. Filter Program (FILTER) 

This program provides an alternative to the Differential 

Correction Program. This FILTER program incorporates two 

sequential estimation algorithms as opposed to the batch processing 

method used in the oe program. These two algorithms, the Linear 

Kaiman Filter (LKF) and the Extended Kaiman Filter (EKF) process 

each observation to recursively update the state at each observation 

time. 
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5. Early Orbit Determination Program (EARL YORS) 

This program is specifically designed to calculate an initial 

estimate of an Earth orbit when there is no apriori estimate 

available to start a differential correction. This initial estimate is 

obtained with as few as six measurements from selected station 

observations. 

6. Data Simulation Program (DATASIM) 

This program computes a simulated observation file at a 

specified frequency for given sets of ground tracking sites and 

observation intervals. Optionally, random and bias errors can be 

applied to the observations. Additionally, the observations can be 

modified to account for the effects of atmospheric refraction, 

antenna mount errors, transponder delays and light time delays. 

7. Error Analysis Program (ANALYSIS) 

This program provides the capability to determine satellite 

state uncertainties about a given orbit as a function of observation 

data uncertainties, epoch state uncertainties, and uncertainties in 

other system parameters. This program has functions similar to the 

oe and DATASIM programs. Accordingly, they share common 

mathematical processing subroutines, input processors, and data 

management options. 
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8. Oata Management Program (OATAMGT) 

The primary function of this program is to retrieve data from 

the GTOS on-line data base to create temporary working files that 

will be used in other programs within GTOS. In performing this 

function the OATAMGT program operates as part of the program that 

will use the working files. This program can also function as a 

stand alone program to create working files for a future program 

execution. It is of interest to note that all programs within GTOS, 

with the exception of the COMPARE and FILERPT programs, require 

the use of the Oata Management Program. 

9. Permanent File Report Generation Program (FILERPT) 

This program produces summary and/or complete printer 

reports of the data and models existing in the GTOS permanent data 

base files. A typical use of the FILERPT program is to determine 

which permanent file data may be appropriate for later use in 

another GTOS program. For example, FILERPT could be utilized to 

examine the Earth Potential Fields File, and then you could applya 

specific geopotential model from that file [53,56]. 

In addition to the improvements of the Semianalytical 

Satellite Theory, Oraper Laboratory has also created a data interface 

which allows GTOS to use the following tracking sources: NORAO 

Historical Oata System, radar observations, optical observations 

(Fieger 1987), European Space Agency Exosat data, TELESAT (Synch-
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X) and other satellite data. Also, as a result of this thesis, Oraper 

Laboratory will have the capability to evaluate the NORAO General 

Perturbation Satellite Theories. 

2.2.2 GTOS Cowell Special Perturbations Orbit Generator 

For this thesis, the Cowell generator will be used to create 

highly accurate reference files to be used both as the 'truth' in both 

the PCE fits and real data analyses of Chapter Five. The Cowell 

equations of motion are expressed as folIows: 

Where: 

~r _P = -- + 
Irr 

(2.29) 

= the position vector in an inertial 

Cartesian coordinate system 

t = time 

= the gravitational constant 

j5 = the total perturbing acceleration 

The actual accelerations which comprise j5 can include all or 

any subset of the following options [53]: 
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1. Gravitational acceleration due to n-point masses. 

2. Gravitational acceleration due to nonsphericity of the 

central body gravitational potential. (21 x 21 harmonie 

coefficient capability) 

3. Acceleration due to the mutual nonspherical 

gravitational attraction of the Earth and moon. 

4. Acceleration due to aerodynamic forces. (Such as drag.) 

5 Acceleration due to solar radiation pressure. 

6. Acceleration due to thrusting spacecraft engines. 

7. Acceleration due to attitude control system corrections. 

8. Model replacement acceleration. This acceleration is 

obtained when accelerometer data is obtained from a 

spacecraft. This data may be used to replace all non­

potential accelerations for a given spacecraft [53]. 

For the purposes of this analysis, j5 includes the first five types of 

acceleration including four point masses (Earth, sun, moon and 

satellite), with the harmonie coefficients tailored to the specific 

satellite of interest. 

Within GTDS there are several options to select from to 

numerically integrate the equations of motion. The first option is to 

select the type of formulation of the equations of motion. There are 

two basic types of formulations, Class land Class 11. The set of 

Cowell equations (2.29) are solved directly for the vector r, using 

the Stormer-Cowell numerical integration formulas. This method, 
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which solves second order systems directly, is known as a Class 11 

formula. Alternately, the slightly modified Cowell equations (2.30) 

dv 
dt 

J.1f -p = --+ 
Ifl3 

(2.30) 

are solved for the velocity vector, v , using the Adams numerical 

integration formulas. This formulation is known as a Class I 

formula and it is necessary for the case of velocity dependent 

perturbations, such as atmospheric drag. 

The second option to evaluate is the type of algorithm to 

utilize. Although there are various algorithms to choose from, 

pseudo-evaluate algorithms significantly increase the stability 

regions of predictor-corrector schemes at little or no cost in 

efficiency. These algorithms are used in this analysis. 

A third option to consider is the order of the process. Various 

order formulas may be selected for use in the algorithm, recognizing 

that higher order formulas are more. accurate but less stable. With 

this point in mind, this analysis uses a twelfth order predictor­

corrector. 

Finally, one must consider stepsize control. Since the orbit 

dynamics may undergo large variations during a revolution, such as a 

high eccentricity orbit, an algorithm must be selected to allow 

stepsize variations. Therefore, efficiency dictates the use of 

stepsize control for moderate and higheccentricity orbits. 
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Furthermore, within GTOS analytic stepsize control is more 

efficient and reliable than numerical stepsize control [53]. 

Throughout this analysis, a stepsize is used which allows for at 

least 100 steps per orbital revolution. 

2.2.3 Oraper Semianalytical Satellite Theory (OSST) 

One of the early reasons for developing the OSST as described 

by McClain [48], was to make more efficient use of computer time, 

specifically in terms of decreasing runtime and storage space 

requirements. The goal was to devise a low cost, long-term orbit 

prediction capability for the following applications: mission 

feasibility studies, mission analysis (Iifetime and geometry .-

constraints), tracking station acquisition schedules, dynamic 

modeling where extended data gaps are encountered, and dynamic 

modeling required for differential correction procedures. A look at 

the method of OSST provides some insight to evaluate both the 

computational efficiency and accuracy of OSST. 

The method of OSST is a combination of the strengths of 

special and general perturbation methods. Perturbations that can be 

expressed in terms of a disturbing potential have that potential 

expressed in the nearly singularity-free equinoctial elements [58], 

as opposed to the classical Keplerian or Oelaunay variables. These 

perturbations are then put into Lagrangian Variation of Parameters 

(VOP) form, so that only sm all perturbations from two-body motion 
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can be considered. Those perturbations wh ich cannot be expressed in 

terms of a potential, such as solar radiation pressure and drag, are 

expressed in Gaussian VOP equations. The small magnitudes that 

these perturbing forces have allows formal application of 

asymptotic methods [57,59] that are based on the method of 

averaging. (See Appendix E for details.) This particular method of 

averaging removes the short-periodic content from the VOP 

equations of motion. This allows numerical integration of the 

equations of motion with much larger step sizes [48]. Then 

interpolators are used to produce accurate mean orbital elements 

for any time of interest. Reverse transformations use the mean 

elements at the time of interest to evaluate the short-periodic 

motion. Interpolation concepts are developed to make the short­

periodic calculations more efficient. These short-periodic 

components are then added to the mean motion to obtain the total 

satellite osculating state. It is significant to note that having the 

knowledge of the mean motion allows recovery of the short­

periodics and hence of the full satellite dynamics. Therefore, the 

averaged or mean motion may be considered an expression of the 

total satellite dynamics [59]. This efficient recovery of the short 

periodics makes DSST as accurate as Special Perturbations, but 

without the significant increase in computational runtime [60]. This 

significant observation is further supported by the efforts of Green 

(1979) and Wagner (1983) [59,61]. 
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Another major advantage of OSST is its inherent flexibility. 

First, the equations of motion can be either singly or doubly 

averaged. Second, the recursive formulation for the gravitational 

expansions, both in the averaged equations and in the short-periodic 

corrections, eliminates the need for separate analytic and software 

development for each harmonie term [8]. Also, this formulation 

allows tailoring of the geopotential by selecting specific zonals, 

tesserals, solar radiation pressures, atmospheric drag effects, 

lunar-solar effects, coupling effects, or resonance effects. 

Additionally, OSST represents atmospheric drag as definite 

integrals to be evaluated by numerical quadratures. This means that 

the same density routines that are used in SP models can be used in 

OSST. Furthermore, since the quadrature process of OSST is 

independent of the density model, there is great freedom to upgrade 

the density models without tremendous analysis or developmental 

efforts [8]. The overall impact of OSST's flexibility is a resulting 

increase in efficiency and a minimization of computer runtime. In 

short, force models and other physical models can be tailored to 

meet specific accuracy requirements with a resulting net savings in 

computational costs. 

Since 1978, Oraper Laboratory has significantly enhanced the 

original export version of the Semianalytical Satellite Theory and 

their GTOS program. These improvements are the result of the 

combined efforts of the CSOL Space Systems Analysis section and 

MIT graduate students under the guidance and leadership of Or. Paul 
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J. Cefola. These enhancements encompass three general areas: mean 

element orbit determination, short-periodic variations and 

sequential and batch estimation. 

There have been numerous improvements to mean orbit 

generation capabilities which include the following [62]: 

1. Development of a J 2 squared model which uses explicit 

formulas constructed with the MACSYMA symbolic algebra 

system. These formulas include terms proportional to the 

zero-th and first powers of the eccentricity [15,63]. 

2. Development of a tesseral resonance model which is based on 

the recursive formulation of the averaged disturbing potential 

and its associated partial derivatives [64]. This model allows 

for a large number of resonant coefficients. The model 

employs the high eccentricity Hansen coefficient formulation 

[65] and two files of modified Newcomb operators. (One file is 

used for low to moderate eccentricity cases and one file for 

high eccentricity cases.) 

3. Development of a recursive double averaged third-body point 

mass model that is applicable to high altitude orbits over long 

time intervals [66]. 

4. Development of second order av~raging methods for the J 2 / 

drag problem [61]. 

5. Development of a semianalytical approach to the state 

transition matrix [61]. 
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6. Development of a me an element interpolation eoneept eoupled to 

the single step integrators of interest in short are orbit 

determination applieations [67]. 

Draper Laboratory's development of the short-periodie models 

ineludes the following: 

1. Development of a reeursive, short-periodie, zonal harmonie 

model by Slutsky [68]. 

2. Development of a reeursive, tesseral m-daily model. These 

perturbations are due to the C and S eoeffieients in the gravity 

field, apply to low altitude satellites and are periodie over 

twenty-four hours or so me fraetion of a day [14]. 

3. Development of a reeursive model for the tesseral short­

periodie linear eombination terms [14]. 

4. Development of a J 2 squared short-periodie model [15,63]. 

5. Development of J 2 and drag seeular/tesseral m-daily eoupling 

model [69]. 

6. Development of short-periodie models for atmospherie drag and 

solar radiation pressure based on numerieal averaging [61]. 

7. Development of a weak time dependent third body short-periodie 

model based on numerieal averaging [61]. 

8. Development of reeursive short-periodie Lunar-Solar 

perturbation models by Slutsky [97] and Collins [66]. 

9. Development of interpolation eoneepts for the short-periodie 

ealeu lations [67]. 
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The efforts of Green (1979), Taylor (1981) and Wagner (1983) 

have developed both the sequential and batch estimations for OSST. 

Specifically, their developments include: the Semianalytical Kaiman 

Filter, the Extended Semianalytical Kaiman Filter and a 

Semianalytical Differential Corrections batch estimator 

[54,59,60,61]. 

2.3 Pertinent Coordinate Systems 

Although both the NORAD GP theories and GTDS utilize 

numerous coordinate frames, this discussion will focus on one 

particular coordinate frame, the mean equinox and true equator of 

date. This frame is of capital interest since the element sets which 

NORAD supplies to the user community are referenced to this frame 

[17,78]. Also, for implementation into GTDS, it is assumed that the 

NORAD GP theories' outputs of position, velocity and partial 

derivatives are in this frame. Before examining the details of this 

unique coordinate frame, a review of so me pertinent concepts is 

necessary. 

A clear understanding of the ecliptic is essential for a precise 

analysis of coordinate systems. The ecliptic is the fundamental 

circle of the ecliptic system of celestial coordinates. The plane of 

the ecliptic is determined by the orbital motion of the earth around 

the sun. Specifically, the radius vector and velocity vector of the 
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Earth intersect the celestial sphere in a great circle along which the 

sun, if viewed from the center of the earth, would appear to be 
~ 

moving at that instant. In other words, the plane of the ecliptic, as 

viewed from the origin of a geocentric coordinate frame, is 

established by the apparent motion of the sun in the celestial 

sphere. The orientation of this plane is always changing due to the 

gravitational attractions of the other planets and the moon. As is 

the case with all satellites, the orbit of the Earth may be 

represented as a very slow, steady, progressive or secular motion 

upon which are superimposed a large number of small periodic 

variations with various periods and amplitudes. At any instant, the 

position of the plane due to the secular component alone is defined 

to be the instantaneous mean orbital plane, and the moving great 

circle in which this mean plane intersects the celestial sphere is 

the ecliptic. Given this precise definition of the ecliptic, other 

terms may now be defined relative to this plane. 

First, the angle between the ecliptic and the celestial equator 

is called the obliquity of the ecliptic, E. See Figure 2-1. The 

celestial equator is defined as the normal to the Earth's polar axis, 

and is always moving due to the luni-solar gravitational torques 

applied to the Earth's equatorial bulge. Furthermore, the two points 

where the equator intersects the ecliptic are the equinoctial points, 

or equinoxes. The equinox at which the sun, in its apparent annual 

motion, crosses the equator from south to north is called the vernal 

equinox, or the First Point of Aries, T. See Figure 2-1 [71]. 
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Figure 2-1. The Celestial Sphere 

The position of the vernal equinox at a specific time is another 

key concept since it is commonly used as a reference point. An 

exact time must be specified because the position of the vernal 

equinox moves due to the combined motion of both the ecliptic and 

equatorial planes. This motion is further categorized as either 

general precession or nutation. 

General precession is defined as the combined effects of 

planetary precession and lunisolar precession. Planetary precession 

is the slow rotation of the ecliptic plane, which is by definition a 

mean plane, (i.e. with only secular variations) due to the planets' 

gravitational attraction on the Earth. This precession consists of an 
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eastward movement of the equinox of approximately twelve seeonds 

of are per eentury and a deerease of obliquity of approximately 

forty-seven seeonds of are per eentury. Lunisolar preeession is part 

of the motion of the equatorial plane whieh moves due to the 

gravitational attraetion of the sun and the moon on the Earth's 

equatorial bulge. This preeession is the smooth lang period 

westward motion of the Earth's polar axis around the eeliptie pole. 

The period of this motion is 26,000 years, and the amplitude of the 

oseillations is 23.5 degrees. Furthermore, it is very important to 

reeognize that the term, mean, when refereneed to the equator or 

equinox, implies that only preeession is taken into aeeount [53]. 

Nutation deseribes the short· periodie motion superimposed 

upon the lunisolar preeession [72]. The dominating nutation term is 

due to the regression of the line of nodes of the moon's orbital plane, 

whieh has aperiod of 18.6 years. The e"iptieal motion of the sun 

and moon relative to the Earth produee other periodie terms, the 

most signifieant being half-month and half-year nutations. Nutation 

eonsists of eorreetions of the eelestial longitude and eorreetions of 

the obliquity. These eorreetions are known as the nutation in 

longitude (~q» and the nutation in obliquity (&) [17]. Respeetively, 

these motions are the periodie oseillation of the apparent (true) 

vernal equinox relative to the mean vernal equinox (along the 

eeliptie); and the periodie oseillation of the true eelestial equator 

relative to the mean eelestial equator [70]. See Figure 2-2 [72]. 
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3 ECLIPTI C (T) 

MEAN CELESTI AL 
EQUATOR (T) 

.... 2 

TRUE CELESTI AL 
EQUATOR (T) 

Figure 2-2. Nutation 

Two other expressions play a key role in this coordinate 

system analysis, and they are: 

L\u = L\q> sin E (2.31) 

and 

L\!l = L\q> cos E (2.32) 

The L\!l term is also known as the equation of the equinoxes [17], 

which is defined as the right ascension of the mean equinox referred 

to the true equator and equinox. This is equal to the difference 

between the mean and true right ascensions of a body on the equator 

[71] . 
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The final key concept to review is the definition of the mean 

equator and mean equinox of 1950.0, or mean 1950.0 inertial 

coordinate frame. 80th GTDS and NORAD theories use this frame as 

their basic inertial reference coordinate frame. It is an Earth­

centered equatorial inertial frame frozen at 1950.0, which is 31 

December 1949, at 2209 zulu time [17,53]. 

This completes the review of the appropriate concepts 

necessary for further analysis. The following development will 

describe both the GTDS and NO RAD coordinate frame 

transformations. 

The GTDS coordinate frame transformations utilize a C matrix. 

This C matrix provides the transformation fram the mean 1950.0 

inertial coordinate frame to the true of date inertial frame for a --

specified date [70]. As an example, where E, is referred to the mean 

1950.0 inertial frame, 

r = CR (2.33) 

and where r.. is a vector referred to the true of date inertial frame 

[53]. This transformation occurs in two steps. First, it is necessary 

to note that the C matrix is a composite of two other matrices, 

C = NP (2.34) 
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where P is the precession matrix and N is the nutation matrix. For 

both GTOS and NORAO theories, the precession matrix transforms the 

coordinate frame from the mean 1950.0 frame to the mean of date 

frame, and accounts for general precession. The GTOS nutation 

matrix transforms the coordinate frame from the mean of date 

frame, to the true of date frame. However, NORAO's nutation matrix 

transforms the coordinate frame from the mean of date to the mean 

equinox and true equator of date [70]. 

In order to describe these nutation transformations, it is 

necessary to define the following rotations, assuming a right-hand 

coordinate frame: 

1. A rotation about the ~ axis: 

[
1 0 

R1 (8) = 0 cos(8) 
o - sin(8 ) 

2. A rotation about the ~ axis: 

[
COS(8) 

R2 (8) = 0 
sin (8) 

3. A rotation about the ~ axis: 
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Si~(8 )] 
cos(8 ) 

(2.35) 

- S~(8 )] 

cos(8 ) 
(2.36) 

.. -~------_. ----- ----------------------------------------------------- ------------



[ 
cos(8) 

Ra (8) = - s~ (8) 
sin (8) O~] 
cos(8) 
o 

(2.37) 

GTOS uses a rigorous nutation transformation defined as the 

composite of three rotations: 

(2.38) 

It is at this point that the NORAO transformations differ from the 

GTOS development [70]. 

The NORAO nutation matrix is based upon a modified 

approximate transformation. First, the rigorous transformation is 

replaced with an approximate transformation (developed by Mueller 

[72]) which is motivated by Figure 2-2. The transformation folIows: 

When this transformation is taken to first order in .1U, or .111, the 

resulting matrix takes the form: 

N 

_-:U] 
1 + second order terms (2.40) 
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(Note: The maximum value of any second order term is 

== 4 x 1 0 - 9 radians ) 

Given this transformation, NORAO now modifies the nutation matrix 

by using only part of Mueller's matrix. The NORAO matrix is 

simplified by letting ö~ equal zero [17,70]. The resulting matrix is: 

NNORAD = 
o -Ö'U] 
1 -& 

& 1 (2.41 ) 

There is another pertinent distinction between GTOS and 

NORAO coordinate transformations, and that relates to the GTOS B 

matrix. This matrix is the composite of an R3 rotation through the 

Greenwich Hour Angle, 99 which is the right ascension of the , 

Greenwich Meridian. This transformation relates the true of date 

coordinates to body-fixed coordinates. Specifically: 

NORAO has a similar transformation, except that the Mean Greenwich 

Hour Angle, 89 is used in place of 99 The difference of these two , . 
terms, 99 - 89 , is also equal to the equation of the equinoxes, ö~ 

[70]. 
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Chapter 3 

INCORPORATION of the NORAO THEORIES into GTOS 

3.1 Overview 

The overall approach for implementing the NORAO GP theories 

in GTOS follows the existing GTOS ephemeris generation 

architecture. This architecture is reflected in Figure 3-1. All the 

GTOS main programs (Ephemeris Generation, Differential Correction, 

etc.) interface with the GTOS orbit generators through subroutine 

ORBIT which is the orbit generator driver. Below subroutine ORBIT, 

there are three major branches: Initialize, Restart, and Output. The 

Initialize branch functions are performed one time only. These 

include time initialization, calculation of reference values for 

various coordinate system transformations, force model 

initialization, and initial element set and coordinate conversions. 

The Restart branch is also an initialization, but it depends on the 

exact values of the epoch orbital element set. This branch directly 

supports differential correction (OC) runs and is executed prior to 

each OC iteration. In an ephemeris generation run, the Restart 

branch is executed one time only. This particular design is 

intentional and reflects an architecture which uses the same 

structure for both the OC and ephemeris generation runs. The Output 

branch evaluates the position, velocity and partial derivatives at the 

desired request time. After obtaining the position, velocity and 
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partial derivatives, the data flow returns to the Executive and 

Driver subroutines. 

Initialize 

GTOS Executive and 
Driver Subroutines 

ORBIT 

Restart Output 

Figure 3-1 Basic GTOS Orbit Generator Architecture 

Two other factors played significant rales in the design 

process. One consideration was to minimize the negative impact on 

the operation of any existing facility in the GTDS program. 

Similarly, another factor was to minimize the maintenance cost 

associated with updati ng any affected faci I ity. These 

considerations were motivated directly by Draper Laboratory's 

previous experience in implementing the DSST in its version of 
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GTDS. This led to a design which makes the incorporation of the 

NORAD GP theories into GTDS independent of and yet accessible to 

other GTDS facilities. Specific aspects of the software design 

wh ich followed from these two considerations include the 

establishment of a separate integration coordinate system (NORAD 

true equator and me an equinox of epoch) to support the NORAD GP 

theories and the establishment of new common blocks for the 

storage of the input NORAD element sets and drag parameters. In 

both of these design choices, the desire was to avoid variables and 

arrays with multiple meanings. 

A major consideration is that the actual SPADOC 48 Fortran 77 

source code was used to the maximum extent possible. One 

advantage of using this code is that we were able to easily 

reproduce the SPADOC benchmark test runs with a high degree of 

accuracy (See Chapter Four) and thereby gain confidence in the 

accuracy of our implementation. Additionally, any corrections or 

improvements to the NORAD GP theories that are made at Draper 

Laboratory will be in a form that is easy to evaluate in the 

government's SPADOC system. Finally, it was recognized that there 

were very significant developmental and testing economies to be 

achieved by following this approach. 

A more detailed diagram of the overall design for the 

incorporation of the NORAD theories in GTDS is given in Figure 3-2. 

At the top, Figure 3-2 provides abrief schematic of the existing 

GTDS program. The module ODSEXEC is the overall main program. 

Subroutine SETRUN drives the input data processing. Subroutines 
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EPHGEN and oe are the main drivers for the ephemeris generation and 

differential correction functions, respectively. For the Differential 

eorrection capability, the mean equinoctial element solve-for logic 

developed earlier [59,60] for the DSST was employed. Subroutine 

ORBIT is the driver for both orbit and partial derivative generation. 

As discussed previously, the details of the orbit generation are then 

partitioned into tone-time' initialization, initialization at the start 

of a oe iteration, and output at arequest time. For the NORAD 

theory implementation, these functions will be handled in new 

subroutines INTOGS, RESINS, and ORBITS, respectively. The RESINS 

routine also calls new subroutine RESSGP, or RESGP4, or RESHAN to 

allow for 'restart' functionality specific to the SGP, GP4, or HANDE 

theories, respectively. Routines RESSGP, RESGP4, and RESHAN then 

call the appropriate SPADOe top level drivers subroutines1 . For the 

output at request time functionality, ORBITS calls ORBSGP or 

ORBGP4 or ORBHAN which again calls the appropriate SPADOe top 

level driver. Figure 3-2 also depicts other new subroutines and 

other modified and unmodified GTDS subroutines. While the above 

software design makes very efficient usage of existing GTDS and 

SPADOe capabilities, it also requires strict attention to the 

communication of data between the several functions. The element 

set is the main format for communication and various definitions of 

the element set are employed. Some of these definitions are given 

1 The drivers for the SGP, GP4, and HANDE theories are SGPAST, GP4AST, 
and HANAST, respectively. Provision for the NORAD Semianalytical Theory, 
SALT [73], is also made in Figure 3-2. 
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in Table 3-1 and their usage is discussed below. The input element 

set is the Keplerian elements. The input element set must be 

Table 3-1. Element Set Oefinitions2 

1. Input Element Set for GP Theories [External units] 

n,a e W w M n / 2 n / 6 8* 8 , 

12. Input Element Set for GP Theories [Internal Units] 

1 n,a e W w M n / 2 n / 6 8*,8 

13. GTOS Solve-Vector [Internal Units] 

I a h k P q n / 2 

14. SPAOOC Solve-Vector [Internal Units] 

1 

I 

k h n p q n / 2 

converted to internal units and both GTOS and SPAOOC internal unit 

conventions need to be considered. The GTOS GP differential 

correction (OC) capability uses the mean equinoctial elements as the 

solve parameters. 3 Thus, the Keplerian to equinoctial 

transformations are employed. For the internal GTOS drag solve-for 

parameter, the SPAOOC drag solve-for parameter n / 2 is used. For 

the GP4 and HANOE theories, the input drag parameter (8* or 8, 

2 
3 

All of the element sets are understood to be epoch values. 
This is a key design choice because the GTDS solve-for vector is very 

similar to the NORAD internal solve-for vector. Also. it allows the use of 
existing GTDS Variation of Parameter capabilities. 
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respectively) must be converted to n / 2. The SPAOOC partial 

derivative routines return astate transition matrix employing the 

SPAOOC solve-for parameter format. This must be converted to the 

GTOS format. After each OC iteration, the current values of the 

GTOS solve parameters must be converted to Keplerian elements for 

input to the GP theories. The current value of n / 2 also must be 

converted to B* or B if the GP4 or HANOE theories are being used. 

The remainder of Chapter Three provides a detailed discussion 

of the NORAO GP implementation in GTOS. This discussion outlines 

the inputs, processing, and outputs. Section 3.2 describes the input 

options. Section 3.3 describes the processing. Within this section, 

the functions are presented primarily in the order that they would 

occur in a GP OC run. The presentation is limited to those GTOS 

functions that were modified and to the new functions that were 

developed. Section 3.4 reviews the output data. Finally, section 3.5 

pravides abrief commentary on the key SPAOOC routines. 

3.2 Input Oata 

3.2.1 Orbit Generator Input Oata 

Possible inputs include the following: 

1. Pseudo-SGP elements fram the NORAO Historical Oata 

System (HOS). 
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2. Orbital elements from an earlier GTOS oe execution 

(SGP, GP4/0P4, 7 parameter HANOE or 18 parameter 

HANOE). 

3. Orbital elements from a SPAOOC benchmark execution 

(SGP, GP4/0P4, 7 parameter HANOE or 18 parameter 

HANOE). 

Element sets are identified both by source and theory to allow 

appropriate preprocessing and to ensure correct usage in GTOS. SGP 

elements from the Historical Oata System (HOS) include: the epoch 

mean motion time derivative divided by two, ri o I 2, (wh ich is also 

the SGP theory drag parameter), the epoch mean motion second time 

derivative divided by six, 1\ I 6, and the drag parameter for 

GP4/0P4 theory, B*. With SGP elements from the HOS, either of the 

propagators, SGP and GP4/0P4, can be correctly executed. For 

several years, however, the GP4 theory has been used in the NORAO 

orbit determination processing for the low altitude cases and the 

OP4 theory has been used for the deep space orbits. The element 

sets resulting from the NORAO 00 processing are converted to 

pseudo-SGP element sets before distribution to the overall user 

community. This conversion is accomplished for user convenience, 

but it should be undone before using the transmitted element sets 

for GP4 or OP4 orbit propagation. It is also possible to 

approximately convert SGP elements to HANOE elements [43J but 

that capability was not implemented in this effort. 
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The GTOS and SPAOOC formats for the Keplerian element sets 

differ only in that the mean semi-major axis (km) is used in the 

GTOS format and the mean mean motion (revs/day) is used in the 

SPAOOC format. And, of course, the element sets must be used in a 

consistent manner. SGP elements computed in a GTOS OC using the 

SGP orbit propagator should only be propagated subsequently using 

the SGP theory. Similarly, GP4/0P4, and HANOE element sets 

determined with a GTOS OC should only be propagated with the same 

orbit generators, respectively. 

Element sets obtained from a previous GTOS OC execution or 

from a SPAOOC benchmark mayaiso include a drag solve-for 

parameter. For the SGP theory, the drag parameter is the epoch 

mean motion time derivative divided by two (rio / 2). For the 

GP4/0P4 theories, B* is the drag solve for parameter. For the 

HANOE theory, the ballistic coefficient B is the additional solve-for 

parameter. 

There are two options for the input to the HANOE theory. 

HANOE can be exercised with the standard seven parameter input; in 
/-~ 

'. this case, the eleven extra HANOE time derivatives ri / 2, n / 6, 

I
y ~ (d3n/dt 3)/ 24, (d4 n/ dt4 )/ 120, e, e/ 2, (d3e/dt 3)/ 6, di/ dt, Ö, 
\AI>-~ ~." 

Y'" Co, and M will be computed as part of the 'one time' initialization 
<:)G) V. 
~y~ . process. Alternatively, the full eighteen parameter HANOE element 

~ },Vo': set can be input. 

~~} For NORAD GP orbit generator runs in GTDS, all 01 the input 

1Y .ff / element sets are currently assumed to be in the NORAO true equator V and mean equinox 01 epoch coordinate system. Also, the user must 

currently request the WGS-72 gravity potential constants if the 
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NORAD GP orbit generators are being employed. Output in various 

coordinate systems including the NORAD true equator and mean 

equinox of epoch and Mean of 1950.0 is available. 

Input of the element set epoch time follows the current GTDS 

convention (UTC) without modification. 

3.2.2 Differential Correction Input Data 

The choice of satellite theory and the allowable input element 

sets is the same as for the Orbit Generation function. The only 

additional inputs are that the user must request the mean 

equinoctial element solve-for parameter set and (optionally) the 

drag parameter solve-for functionality. The currently available drag 

parameter solve-for options4 are the following: 

1. SGP - Salve for ri o I 2. 

2. GP4/DP4 - Salve for 8*. 

3. HANDE - Salve for 8. 

Also, the user may input an apriori standard deviation for the drag 

solve-for parameter. Existing GTDS DC inputs that are independent 

of the satellite theory are supported. 

4 This refers to the drag solve-for parameter used in the input/output. As 
noted earlier. both SPADOC and GTDS intemally always solve for the epoch 
mean motion time derivative divided by two. 
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3.3 Processing 

This section describes the processing. Within this section, the 

functions are presented primarily in the order that they would occur 

in a GTOS GP OG run. The presentation is limited to those GTOS 

functions that were modified and to the new functions that were 

developed. 

3.3.1 Key Gommon Blocks 

Gommon blocks play an essential role in implementing the 

communication between the several subroutines. In this 

development, some existing GTOS common blocks were modified, 

three new common blocks were developed, and several SPAOOC 

common blocks were employed. Most importantly, the SPAOOC 

common blocks were accessed in the new interface routines 

(INTOGS, RESSGP, RESGP4, RESHAN, ORBSGP, ORBGP4, and ORBHAN) to 

support either the transfer of data into the SPAOOG routines or the 

retrieval of data from the SPAOOG routines. The key common blocks 

are listed in Table 3-2 along with brief comments on their usage. 

More detailed descriptions are provided as the common blocks are 

applied. 
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Table 3-2. Key Common Blocks 

1 . Modified GTDS Common Blocks 

IFRCI integration parameters 

IMATRIXI current time and reference values of coordinate 

system transformations and related data 

2. New Common Blocks 

IGPELSI input flags and values of the epoch NORAD element 

sets and simple transformations thereof 

INORCONI time and angle conversion factars 

INORINTI drag solve-for parameters and variances 

3. SPADOC Common Blocks 

IACONVCI units conversion constants 

IACPHYSI physical constants 

IADCEL TI DC element set; used to input data to DCIN28 

IADCIRQI DC input/control data; used to input data to DCIN2B 

IAELSETI standardized element set records; used to input 

data to the top level drivers (SGPAST, GP4AST, or HANAST) 

IAEPHOTI standardized ephemeris records; used to retrieve 

data fram the top level drivers (SGPAST, GP4AST, or HANAST) 

I AG2MATI used to retrieve state transition matrix from G2M 

CPC 

I AMATHCI mathematical constants 
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3.3.2 Input Data Proeessing (SETRUN, SETORB) 

This seetion deseribes the modifieations to the GTDS input 

data proeessing funetion that were made to support the NORAD GP 

theories. There are modifieations to proeessing of the GTDS 

mandatory eards5 and these are implemented in subroutine SETRUN. 

The modifieations to the proeessing of the Orbit Generator Optional 

(OGOPT) subdeek eards are implemented in subroutine SETORB. 

3.3.2.1 SETRUN 

There are two sets of modifieations to be diseussed. The first 

deseribes the proeessing of the mandatory eards in a Differential 

Correetion (DC) or Ephemeris Generation (EPHEM) run when that 

program is the first job step. The seeond set of modieations 

supports the passing of an element set to a seeond job step. This 

seeond eapability is used when an EPHEM step is used to ereate an 

ORB1 file following a DC. 

For the first eapability, modifieations were made to the 

proeessing of the ELEMENTi(i=1,2), EPOCH, ORBTYPE, and OUTPUT 

mandatory keyword eards. For the GP theories, new keyword eards 

ELEMENT3, ELEMENT4, ELEMENTS, and ELEMENT6 were introdueed (see 

Appendix F). The ELEMENT3 eard is mandatory for all the GP theories 

(SGP, GP4/DP4, and HANDE). The ELEMENT4, ELEMENTS, and ELEMENT6 

eards are mandatory only for the HANDE eighteen parameter input 

5 See the R & D GTDS User Guide for a discussion of the mandatory cards 
and the optional subdecks. 
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option. The processing in SETRUN is organized on a card by card 

basis and the discussion here follows that organization. 

For the ELEMENT1 card, the initial error checking is modified 

to allow for the NORAD true equator and mean equinox of epoch input 

coordinate system orientation . The flow then branches to a NORAD-

specific section. The input coordinate system type (see the 

description of the ELEMENT1 card in Appendix F) is stored in new 

common block IGPELS/. 8ased on this value, either the mean motion 

or the semimajor axis is stored in IGPELS/. If the mean motion is 

input, it is converted from NORAD external units (rev/day) to NORAD 

internal units (radimin) prior to being stored in IGPELS/. The 

conversion factars are passed into SETRUN via the new common 

block INORCON/. Next, eccentricity and inclination are stored in 

IGPELS/. Again, the inclination is converted fram NORAD external 

units (deg) to NORAD internal units (rad). 

The ELEMENT2 card supports the input of the longitude of 

ascending node, argument of perigee, and Mean anomaly. These are 

converted to internal units and then stored in IGPELS/. 

The implementation of new mandatory cards required a 

increase in the number of mandatory keywords, NMAND, and new 

mandatory keywords in array MANCRD. The ELEMENT3 card supports 

the input of ri o I 2, no I 6, and 8* (ar 8 for HANDE). The quantities 

ri o I 2 and no I 6 are converted to NORAD internal units and all three 

quantities are stored in IGPELS/. 

The ELEMENT4 card supports the input of theHANDE parameters 
3 3 4 4 . 

(d nl dt )0 I 24, (d nl dt )0 I 120 , and e. All three quantities are 

converted to internal units and stored in IGPELS/. 
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The ELEMENTS card supports the input of the HANOE parameters 
2 2 3 3 . 

(d el dt )0 I 2, (d e I dt )0 I 6, and (dl I dt)o' All three quantities 

are converted to internal units and stored in IGPELS/. 

The ELEMENT6 card supports the input of the HANOE parameters 

(dill dt)o' (deo I dt)o' and (dMI dt)o' All three quantities are 

converted to internal units and stored in IGPELS/. 

The format of the EPOCH card is unchanged. The time 

initialization function is unchanged except that a NORAO reference 

time is computed. This reference time is the number of minutes 

from January 0.0, 1970 to the input epoch. The reference time is 

stored in IGPELS/. This calculation employs the GTOS module 

TIMREL and is based solelyon Julian date. 

For the ORBTYPE card, a new processing branch was 

implemented for the NORAO GP theories. The processing is similar 

in scope to that for the Brouwer and Vinti theories. The GP output 

type (osculating - or mean) and the reference time computation 

method flag IGTIME are stored in IGPELS/. The integration 

coordinate system (NORAO true equator and mean equinox of epoch) 

flag in IFRC/ is set. The SLP working file parameter NWSLP in 

IFILESI is set to true of date. 

The OUTPUT card processing is unchanged except that the range 

of allowable output coordinate system orientations is expanded to 

include NORAO true equator and mean equinox of epoch frame. 

After all the mandatory cards are read, there is additional 

initialization and consistency checking. For the NORAO GP theories, 

the following additional checks are performed: 
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- If one of the GP theories is requested and no ELEMENT3 

card was read, an error is declared. 

- If the HANDE theory with eighteen parameter input is 

requested and one of the ELEMENT4 or ELEMENTS or 

ELEMENT6 cards was not read, an error is declared. 

- If a GP theory other than HANDE with eighteen 

parameter input is requested and one of the 

ELEM ENT 4 or ELEM ENTS or ELEM ENT6 cards was 

read, an error is declared. 

At this point, the previously existing 8ETRUN data flow resumes and 

the various optional subdecks including the orbit generator subdeck 

OGOPT are read. The OGOPT cards are processed in subroutine 

8ETORB. Modifications of 8ETORB to support the NORAD GP theories 

are described in the following section 3.3.2.2. Finally, several 

miscellaneous parameters are set. This includes the conversion of 

the specific orbit generator type to a 'general' type. The general 

types are numerical and analytical. The NORAD GP theories are 

included with the numerical theories (CoweIl, 88T, etc.) because 

this simplifies the subsequent treatment of the partial derivatives. 

After completion of 8ETRUN processing, control returns to the 

OD8EXEC level (see Figure 3-2). 

The initialization by 8ETRUN of a second GTD8 job step based 

on astate vector computed in the first job is straightforward. The 

ELEMENTi and EPOCH cards are not used in the input deck for the 

99 



second job step. For the NORAO GP theories, an additional branch 

was implemented. The input coordinate system type is set in 

IGPELSI based on the type of GP theory employed in the first job 

step. The input coordinate system type is always one of the GTOS 

formats (see the ELEMENT1 card description in Appendix F). The 

Keplerian elements are copied from IOCINTI to IGPELS/. If the first 

job step was a OC, these Keplerian elements will be the last OC 

iteration values. Similarly, the last iteration values of ri o I 2 and 

B* (or B) are copied from common block INORINTI to IGPELS/. At 

this point, the previous SETRUN data flow resumes. 

3.3.2.2 SETORB 

Subroutine SETORB is called by SETRUN to process the OGOPT 

subdeck. The primary modification is to the processing of the 

ORAGPAR card. The general function of this card is to update drag 

solve-for parameters. For the GP theories, aseparate branch is 

implemented. If the drag solve for capability is requested in a OC 

(or drag partials in an EPHEM), the drag partial derivative flag in 

ISWITCHI is turned on and the apriori variance of the solve-for 

parameter is computed from the input standard deviation of that 

parameter (see Appendix F). The apriori variance of the drag solve­

for parameter is then set in IGPELS/. 

The processing of the POTFIELO card is also slightly modified. 

Specifically, the potential field number is also stored in IGPELS/. 

NO RAD GP runs (both EPHEM and OC) mayaIso use the STATEPAR and 
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I 
/ STATETAB cards. However, the processing of those cards is not 

modified. 

3.3.3 Initialization 

Both the GTDS DC and EPHEM programs interface with the orbit 

generator through subroutine ORBIT. When ORBIT is requested to 

perform the one time initialization of a NORAD GP theory, new 

subroutine INTOGS is called. . The general architecture for INTOGS 

follows the initialization of the numerical theories as implemented 

in GTDS routine INTOGN. The functions implemented in INTOGS 

include: 

- initialization of time and coordinate systems 

- initialization of semimajor axis 

- initialization of element set arrays 

- initialization of HANDE time derivatives 

- initialization of drag solve-for parameters and partial 

derivative flags 

These are described in the following paragraphs in more detail. 

. 3.3.3.1 Initialization of Time and Coordinate Systems 

This function starts with calls to NEPOCH and EVAL to compute 

time parameters including TZERO which is the number of A.1 seconds 

from 1950.0 to the input epoch. If the A.1 - UTC corrections are to 

be considered in computing the minutes from January 0.0, 1970 to 
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(3.1) <-~. 
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and stored in IGPELS/. The constant in equation (3.1) is the number J..I ~ 
-xt..LJ .PUl 

of seconds from 1950.0 to January 0.0,1970.6 ,\ " -~,()'1~ 
~ 

Next, a call to EVAL is made to compute the reference time..-' ~ . u ~d-

coordinate transformation matrices. In INTOGN, this call provides (~Cf, I" _ 
the mean equator and mean equinox of 1950.0 to True of Date -?~.18'4 

) 

coordinate transformation (C matrix). For this implementation, r:.tu-
EVAL was modified to additionally compute the rotation matrix/fe.~ ~ 
which provides the transformation from the GTDS C matrix to the 

.);/.u (~'rP5 

NORAD C matrix? 
7.(.i7A.~ 

This rotation matrix is denoted as CNC, and is ( . J . .. ~ 
-A..1...t~ 

calculated in subroutine EVAL by the following equation: 

CNC= CN CT 

(3.2) 

The term CN in equation (3.2) is the NORAD C matrix and it is 

computed by calling the subroutine NORAD which in turn calls 

subroutine PRENUT (see Figure 3-2). The quantity C is the GTDS C 

matrix, which subroutine EVAL computes from the GTDS Solar Lunar 

Planetary (SLP) ephemeris files. The new variables CN and CNC were 

added to the GTDS common IMATRIXI [70]. Subroutine INTOGS saves 

This calculation was supplied by W. McClain.· 6 
7 The NORAD C matrix is the transformation from mean equator and mean 
equinox of 1950.0 frame to the NORAD true equator, mean equinox of date 
frame. 
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~. CNC, also in /MATRIX/. Subroutine INTOGS also computes some 

coordinate transformations to support the ephemeris generation 

print output options and these are also stored in /MATRIX/. 

Additional modifications were made to EVAL. These are 

employed later in the overall data flow but discussed here for 

convenience. To allow EVAL to compute the NORAD B matrix8 , 

designated SN, the subroutine THETAG was modified to load the mean 

Greenwich Hour Angle into the variable GHAM. Subroutine THETAG 

already calculated this value as part of an equation to compute the 

Greenwich Hour Angle value. Specifically: 

where 

e 9 = 9g + ßfJ. 

e 9 = Greenwich Hour Angle 

= Mean Greenwich Hour Angle 

Equation of the Equinoxes. 

(3.3) 

To accommodate these changes, the new variables GHAM and SN were 

added to /MATRIX/. 

8 The NORAD B matrix is the transformation from the NORAD true equator, mean 
equinox of date frame to the body fixed frame. 
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3.3.3.2 Initialization of Semimajor Axis 

Several of the GP input options (see the ELEMENT1 card 

description in Appendix F) allow the input of the mean mean motion 

instead of the mean semimajor axis. This was done purposely to 

facilitate the direct usage of NORAD format element sets in GTDS. 

However, the input mean motion must be converted to semimajor 

axis to initialize the GTDS mean element solvewfor vector. The 

conversions employ constants from the SPADOC common block 

modules IACPHYSI and IACONVCI which are 'included' in INTOGS. 

The options considered are the following: 

w If SGP elements (SPADOC format) are input and the 

orbit generator is SGP, then the mean motion is 

converted to semimajor axis via an iterative 

algorithm taken from the SPADOC subroutine 

SGPINT. 

w If GP4/DP4 elements (SPADOC format) are input and 

the orbit generator is GP4/0P4 or DP4, then the 

mean motion is converted to semimajor axis via 

the two body equation: 

(3.4) 

w If HANDE elements (SPADOC format) are input and the 

.~ 

orbit generator is HANDE (either 7 or 18 parameter .~ 
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input), then the mean motion is converted to 

semimajor axis via the two body equation (3.4). 

- If SGP elements from the Historical Data System 

(SPADOC format) are input and the orbit generator 

is SGP, then the mean motion is converted to 

semimajor axis via the non-iterative algorithm 

given in the SGP portion of Spacetrack Report #3 

[5]. 

- If SGP elements from the Historical Data System 

(SPADOC format) are input and the orbit generator 

is GP4/DP4 or DP4, then the mean motion is 

converted to semimajor axis via the non-iterative 

algorithm given in the SGP4 and SDP4 portions of 

Spacetrack Report #3 [5]. 

The computed value of semimajor axis (km) is stored in IGPELS/. 

3.3.3.3 Initialization of Element Set Arrays 

The Keplerian elements a, e, i, n, 00, M now stored in IGPELSI 

are converted to position and velocity , spherical elements, and 

equinoctial elements via the GTDS subroutine ELEME. The position 

and velocity , Keplerian elements, and spherical elements appear in 

the orbit generator initial condition reports. The epoch position and 

velocity, Keplerian elements, and equinoctial' elements are stored in 
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GTDS common block /DCINT/ for subsequent use in the DC 

processing. 

3.3.3.4 Initialization of HANDE 

First, the SPADOC routine FLUXG2 is called to initialize the 

solar activity and geomagnetic index data. 

For both HANDE input options (7 and 18 parameters), the Keplerian 

elements (including both mean motion and semimajor axis), 8 term 

(area to mass ratio), and reference time from IGPELS/ all are loaded 

into the SPADOC common block /AELSET/. For the 7 parameter input 

option, the HANDE top level driver routine HANAST is then called to 

initialize the extra eleven HANDE time derivatives ri I 2, fi I 6, 

(d3n/dt 3)1 24, (d4n/ dt4 )/ 120, e, ä/ 2, (d3e/dt 3)1 6, dil dt, n, 
cO, and M. The initialization process employs the Jacchia 1970 

atmospheric density model as do all GTDS HANDE capabilities at 

present. The extra time derivatives are then stored in IGPELS/. For 

the eighteen parameter input option, the extra time derivatives are 

simply copied from /GPELSI to /AELSET/. 

3.3.3.5 Initialization of Drag Solve-for Parameters and Flags 

This functionality supports the DC process" by initializing the 

internal GP drag solve parameter ri o I 2 and its variance. 80th the 

internal and external drag parameters (and their variances) are 

stored in common block INORINT/. This common block provides 

locations for the current iteration, previous iteration, and initial 
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values. INTOGS puts the initial values of the respective parameters 

(and variances) into all three locations (current, previous, and 

initial). The theory specific details follow: 

- For the SGP theory, the input values of ri o I 2 and its 

variance are copied from IGPELSI to INORINT/. 

- For the GP4/DP4 theories, the internal solve-for 

parameter ri o I 2 is computed from the input B* ~ 

value via the equation «k ~ .M ftCJ.i ~ . 
K ~ ~ j:: ~o Q: JUl 

ri I 2 = (3 I 2)nC 2 B* Gf4 Jtfr"., 1 

U (3.5) 

This approximate equation is derived from the GP4 

theory. The C2 coefficient is one of the 

parameters in the GP4 theory and is computed via 

the new subroutine GP4IC2. The algorithm in 

GP41C2 is taken from SPADOC subroutine GP4INT. 

The variance of ri o I 2 is computed via the similar 

relation: 

2 

Var n/ 2 = [(3 I 2)nC 2 ] Var S' 

(3.6) 

- For the HANDE theory, the internal solve parameter 

ri o I 2 was either input (18 parameter option) or 

computed earlier (7 parameter option) via the 
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INTOGS call to HANAST (see above). The variance 

of r\ / 2 is computed via the equation 

Var n/2 = [(li / 2) / B]2Var B 

(3.7) 

This equation assumes that there is a linear 

relation between Ii / 2 and B in the HANDE theory 

[50]. 

Finally, INTOGS sets the partial derivative flags INDY and INDX in 

common /FRC/ based on the data stored earlier in common 

/SWITCH/. These flags are used to control the DC logic. This last 

functionality is similar to that in INTOGN. 

At this point, the one-time initialization is complete and the 

flow returns from INTOGS to ORBIT and in turn to either INTDC (the 

DC initialization driver in GTDS) or EPHGEN (the top level ephemeris 

generation driver in GTDS) (see Figure 3-2). 
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- 3.3.4 Solve Table Set-Up (SOLTAB) 

In a OC run, subroutine SOLTAB is called by INTOC to set up the 

dynamic solve-for parameter tables and to set various program 

switches consistent with the requested solve-for parameters. The 

NORAO GP OC's employ the mean equinoctial element solve-for 

parameters and this set of solve-for parameters is already 

supported by SOLTAB. The initial cartesian, Keplerian, and 

equinoctial elements stored in common IOCINTI earlier by 

subroutine INTOGS are copied into arrays of past and present 

element values stored in common IOCFLI. Then the present 

equinoctial elements are copied into the apriori and current 

estimation arrays. The apriori and current arrays are stored in 

IOCFLI and IOCINT/, respectively. For the GP drag solve-for 

parameters, minor modifications were made to SOLTAB. If drag 

solve-for is requested, the initial value of ';0 I 2 from common 

INORINTI is copied into the apriori and current estimation arrays. 

The code also tests the initial value of the ';0 I 2 variance; if the 

value is nonzero, the initial variance is set in IOCFLI. From this 

point, SOLTAB checks other solve-for flags (which will be off in a 

GP OC) and then returns to the driver INTOC. 

3.3.5 Restart (ORBIT, RESINS) 

When ORBIT is requested to perform the start of OC 

initialization for a NORAO GP theory, the new subroutine RESINS is 

called. RESINS initializes standard GTOS parameters needed to start 
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another integration span beginning at epoch time. The routine 

checks for sectioning and then functions as a driver for calls to the 

GP satellite theory specific routines RESSGP, RESGP4, and RESHAN 

(see Figure 3-2): 

3.3.5.1 Restart for SGP (RESSGP, SGPAST) 

Subroutine RESSGP performs the following functions: 

The current iteration values of semimajor axis, 

eccentricity, and inclination are used to compute 

the SGP mean motion. 

- The current iteration Keplerian elements and mean 

motion, the initial values of ri o / 2 and Ao / 6, and 

the reference time REFM70 are loaded into the 

SPAOOC standardized element set record common 

block, /AELSET/. 

- For an EPHEM run without partial derivatives, the 

SPAOOC top level driver for SGP, SGPAST, is called 

to perform the SGP initialization function. 

- For CJ. OC run or an EPHEM run with partial derivatives, 

the current iteration value of ri o / 2 is loaded into 

/AELSET/ and the SPAOOC top level driver for SGP, 
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SGPAST, is called to perform the SGP initialization 

function with partial derivatives. 

The current iteration values of the Keplerian elements come from 

array AEINT in GTOS common block IOCINT/. The iterative 

conversion from semimajor axis to mean motion uses a modified 

form of the mean motion to semimajor axis conversion found in 

SPAOOC routine SGPINT. The conversions employ constants from 

SPAOOC modules IACPHYSI and IACONVCI which are 'included' in 

RESSGP. The current iteration value of ri o I 2 comes from INORINT/. 

The initial values of ri o I 2 and Ao I 6, and the reference time 

REFM70 come from IGPELS/. The details of the SGP flow below the 

driver SGPAST are given in Figure 3-3. 

3.3.5.2 Restart for GP4/0P4 (RESGP4, GP4IC2, GP4AST) 

Subroutine RESGP4 performs the following functions: 

The current iteration value of semimajor axis is used 

to compute the GP4 mean motion via the two body 

formula. 

- The current iteration Keplerian elements and mean 

motion, the initial value of B*, and the reference 

time REFM70 are loaded into the SPAOOC common 

block IAELSET/. 
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For an EPHEM run without partial derivatives, the 
SPAOOC top level driver for GP4/0P4, GP4AST, is 
called to 'perform the GP4/0P4 initialization 
function. 

For a OC run or an EPHEM run with partial derivatives, 

the current iteration value of ';0 I 2 is converted to 

B* via a call to GP4IC2, both ';0 I 2 and B* are 

loaded into IAELSET/, and the SPAOOC top level 

driver for GP4/0P4, GP4AST, is called to perform 

the GP4/0P4 initialization function with partial 

derivatives. 

The common block usage to support RESGP4 is similar to that for 

RESSGP. The details of the GP4 flow below the driver GP4AST are 

given in Figure 3-4. 

3.3.5.3 Restart for HANOE (RESHAN, OCIN2B, HANAST) 

For an EPHEM run, subroutine RESHAN calls the SPAOOC top 

level driver for HANOE, HANAST, to perform the pre-update function 

if no partial derivatives are required. For an EPHEM run with partial 

derivatives, HANAST is called to perform the pre-update function 

with the G2 partials. 

For a OC run, the RESHAN performs the following functions: 
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The current iteration value of semimajor axis is used 

to compute the HANDE mean motion via the two 

body formula. 

- The current iteration Keplerian elements and mean 

motion, the initial value of B, and the reference 

time REFM70 are loaded into the SPADOC common 

block IAELSET/. 

- If the drag solve-for capability is requested, the 

current iteration value of ri o I 2 is converted to B 

via a call to the SPADOC subroutine DCIN2B9 and 

the B value is loaded into IAELSET/. This step 

requires the involvement of the SPADOC common 

blocks IADCEL TI and IADCIRQ/. 

9 The SP ADOC DCIN2B routine was modified as follows: 

1. The representation time, LRPTIM. was changed from the value 
stored in ARLDCL (APLEPT. APLNEW). to the value stored in 
AOMGRM. (This change was coordinated and directed by Jon Kolb 
ofFACC.) 

2. Write statements which output data into File 7 were eliminated to 
avoid the possibility of writing data into GTDS files. 

3. Debug write statements were eliminated. 
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HANDE initialization is performed via a call to the 

driver HANAST to update the extra time derivatives 

ri / 2, ii / 6, (d3n / dt 3) / 24, (d4 n / dt4 ) / 120, e, 
e / 2, (d3 e / dt 3) / 6, di / dt, Q, ro, and M. 

- HANDE pre-update with the G2 partials is performed 

via a call to HANAST. 
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The subroutine structure below HANAST is described in Figure 3-5. 

3.3.6 Solve Parameter Titles (GVCVL) 

Subroutine GVCVL is called by subroutine OC during the first 

OC iteration to generate output title arrays The title 'NOOT/2' and 

associated logic were added to support the NORAO GP theories drag 

solve-for option. Titles for the mean equinoctial elements were 

already implemented and did not require modification. 

3.3.7 Output at Request Time (ORBIT, ORBITS, ORBSGP, ORBGP4, 

ORBHAN) 

When ORBIT is to provide the position, velocity, and partial 

derivatives at arequest time using one of the NORAO GP theories, 

ORBIT calls the new subroutine ORBITS. Subroutine ORBITS checks 

for sectioning and then makes calls to the appropriate intermediate 

driver ORBSGP, ORBGP4, or ORBHAN, which in turn calls the 

appropriate top level SPAOOC GP theory driver SGPAST, GP4AST, or 

HANAST. Subroutines ORBSGP, ORBGP4, and ORBHAN are quite 

similar and are discussed jointly. 

3.3.7.1 Position and Velocity 

The processing starts with the conversion of the GTOS request 

time which is seconds from epoch (TTO) to the corresponding 
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SPAOOC time which is the number of minutes since January 0.0, 

1970. The conversion is implemented via the equation: 

TIMREQ = REFM70 + (TTO/60) 

(3.8) 

In this expression, the SPAOOC reference time REFM70 comes from 

common /GPELS/. The TTO parameter is passed into ORBSGP, 

ORBGP4, and ORBHAN via the /OCINT/ common. Next, the respective 

SPAOOC top level driver (either SGPAST, GP4AST, or HANAST) is 

called to perform the update function. The update function returns 

position and velocity coordinates in the SPAOOC internal units 

(earth radii, etc.) via the SPAOOC ephemeris record common block 

/AEPHOTI. The coordinate frame is the NORAO true equator mean 

equinox of epoch. These coordinates are converted in ORBSGP, 

ORBGP4, and ORBHAN to km and km/sec using conversion constants 

from /AMATHC/ and /ACONVC/. The converted positions and 

velocities are stored in the GTOS arrays XTO and XOTO in common 

/OCINT/. At this point, the data flow returns to ORBITS and in turn 

to ORBIT if partial derivatives are not required. 

3.3.7.2 Partial Derivatives 

The SPAOOC satellite theories return partial derivatives to 

ORBSGP, ORBGP4, and ORBHAN via the 6 x 7 array AG2STM in SPAOOC 

common block /AG2MAT/. However, this array cannot be used 

directly in GTOS because of differences in the definition of the mean 

equinoctial element solve vectors between GTOS and SPAOOC. 
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Review of Table 3-1 shows that the differences are the usage of the 

semimajor axis in the GTOS set versus the use of the mean motion in 

the SPAOOC set and the mismatching sequence of elements. Also, 

the internal SPAOOC units do not match the GTOS internal units. 

These differences dictate the interface operations which are applied 

to the SPADOC partial derivative matrix. 

The SPADOC subroutines G2MAST and G2MEOE calculate the 

partial derivative matrix that is stored as the 6 x 7 array AG2STM in 

the SPAOOC common block /AG2MAT/. Figure 3-6 gives the exact 

form of the AG2STM array: 
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Figure 3-6 Members of the AG2STM Array from Subroutine G2MEOE 
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-
The final form of the partials required by GTDS can be expressed: 

a r.(t) ,~(t) (osculating ) 
a aj (0) 

= (a r(t) , y(t) ( ose) J (a a j (t) J a aj (t) 
a a.(t) ( osc) a a. (t) a a. (0) 

I I I 

(3.9) 

where the AG2STM array will be transformed to be the third matrix 

in the RHS of equation (3.9). 

The first modification is necessary because the sequence of 

the partial derivatives in the SPADOC AG2STM array does not match 

the sequence required by GTDS. Therefore, the SPADOC sequence of 

(k, h, p, q, n, A, ri o I 2) must be changed to (a, h, k, p, q, A, ri o I 2). This 

reordered set of partial derivatives is stored in the array AGRSTM 

and its members are depicted in Figure 3-7. 

n (a n) an a n an an an an 
o an a ho a k 0 apo aqo a Ao a(ri o /2) 0 

ah ah ah ah ah ah ah 
no (-ar,) a h o a k o apo a qo a Ao a (ri 0 I 2) 0 

ak a k ak ak ak ~ ak 
no (an) a ho a ko apo a qo a Ao a(ri o /2) 0 

ap ~ ~ ap ap ~ ap 
no(an) a ho a k o apo aqo a Ao a(ri o /2) 0 

aq ~ aq ~ ~ aq aq 
no(ar;-) a ho ak o apo a qo aA a(ri o /2) 0 0 

n (~) aA aA aA aA aA aA 
o an a ho a k o apo a qo a Ao a (rio I 2) 0 

Figure 3-7 Reordered AG2STM Matrix, AGRSTM 
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Another problem stems from the difference between the 

SPADOC and GTDS equinoctial element sets. The GTDS program DC 

logic expects the partial derivatives to be taken with respect to the 

semimajor axis at epoch, ao ' whereas the AGRSTM partial 

derivatives are taken with respect to mean motion at epoch, no ' 

Additionally, the first row of the AGRSTM matrix takes the partial 

deviatives of the mean motion instead of the semimajor axis. To 

alleviate these differences, the chain rule of partial differentiation 

can be used as foliows: 

For the first column of array AGRSTM, 

(3.10) 

Differentiation of the two body relation 

(3.11 ) 

yields 

(3.12) 

Similarly, for the first row of AGRSTM, 

aa _ (aa)~ 
aa. an aa. 

I I 

(3.13) 
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where: 

(3.14) 

Therefore, it is necessary to multiply the first column of the 

AGRSTM array by the factor - (~~) and the first row by the factor 2 ao 

Additionally, the semi-major axis used in both the AG2STM and 

AGRSTM arrays is in NORAO internal units. All GTOS and NORAO 

distance and angle units are precisely the same with the exception 

of NORAO's semimajor axis, which is measured in Earth radii. To 

convert the members of the SPAOOC derived arrays from NORAO 

units into GTOS units, divide column one by the conversion constant 

AKMPER (km/Earth radius) and multiply row one by AKMPER. Lastly, 

since any partial derivative taken with respect to mean motion at 

epoch is multiplied by mean motion at epoch, divide column one by 

These operations are summarized as folIows: 

. ( 3 no 1 1 ) 
1. Multlply column 1 of AGRSTM by - 2" ~ AKMPER ~ 

2. Multiply row 1 of AGRSTM by (- ~ ~ (AKMPEF}) 

and are implemented in subroutines ORBSGP, ORBGP4, and ORBHAN. 

After these operations on AGRSTM are performed, the members of 

the first six rows and columns of the modified AGRSTM array will be 

equivalent to the members of the GTOS B2 matrix as depicted in 

Figure 3-8. 
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(~) a a o 

(lJl.) a ao 

(..2...!L) a a o 

(~) a a o 

(~) a a o 

(11:...) a a o 

aa 
a h o 

ah 
a h o 

ak 
a ho 

ap 

a h o 

1..9.. 
a ho 

a", 
a ho 

aa 
a k o 

ah 
a k o 

..2..!i. 
a k o 

ap 

a k o 

.2..9.. 
a k o 

a", 
a k o 

aa 
apo 

ah 
apo 

..2..!i. 
apo 

ap 

apo 

.2..9.. 
apo 

a", 
apo 

aa 
a qo 

ah 
aqo 

..2...!L 
a qo 

ap 

aqo 

.2..9.. 
a qo 

a", 
a qo 

Figure 3-8 GTOS 8 2 Matrix 

~ 
a "'0 
ah 

a "'0 
~ 
a "'0 
ap 

a "'0 
aq 

a '" 0 

a", 

a "'0 

This eoneludes the required operations neeessary to make the 

SPAOOC AG2STM array eompatible with the GTOS eonvention. 

There is one more issue to address before ealeulating the 

required 6 x 7 array: 
a L(t) ,.)l(t) (oseulating ) 

a a j (0) 

This issue is the ealeulation of the two body partial derivatives: 

( a L(t) , .Y(t) ( ose) J 
a a.(t) ( ose) 

I 

There are two required sets of input data whieh the subroutine 

EPART must have to ealeulate this partial derivative array. First, 

124 

-



. .-----

the subroutine must have the osculating equinoctial elements, since 

these values are required inputs for the calls to subroutines AUXPAR 

and ECLONG. Additionally, EPART must have the position and 

velocity vectors. The position and velocity were obtained earlier. 

Given the position and velocity as input data, a call is made to the 

GTOS subroutine EQUIN, which calculates the osculating equinoctial 

orbital elements. Now, with the required position and velocity and 

osculating equinoctial elements, a call is made to subroutine EPART 

which yields the required two body partial derivatives. 

Finally, the partial derivatives required by GTOS can be 

obtained by evaluating: 

(
d L(t) ,~( t) (OSC») 

da. (0 ) 
I 

_ (d L(t) , ~(t) ( OSC») 
- d a.(t) ( osc) x 

I 

( daj(t)) 
d ä. (t) 

I 

x ( d ä j (t) ) 
da. (0) 

I 

(3.15)10 

The resulting values are stored in the GTOS common block /OCINT/ 

for further processing within GTDS. This partial derivative 

implementation is a key interface which allows the GTOS software 

to calculate partial derivatives that use SPAOOC position, velocity 

and partial derivatives as inputs. 

10 Equation 3.15 is evaluated assuming that 

( da. (t)) 
dä: (t) = I sxs 
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The SPADOC equations used to calculate the partial derivatives 

of the current mean equinoctial elements with respect to the mean 

equinoctial elements at epoch are very similar to the analytical 

GTDS (B2 Matrix) for the J 2 terms. This comparison is further 

explored in appendices Band C. Appendix B presents the equations 

used in subroutine G2MEOE by theory type. Appendix C gives a 

mathematical comparison of the partial derivative equations of 

GTDS [74] and SPADOC [17]. 

3.3.8 Observation Modelling 

3.3.8.1 Position and Velocity Data (OBSPCE, ROTKEY, ROTRAN) 

Subroutine OBSPCE computes the PCE (Inertial Coordinates) 

observables. At a given observation time, the state is computed via 

a call to ORBIT. Subroutine OBSPCE transforms the computed state 

to the same reference frame as the actual observations. [In terms of 

the Residual Equation, 0 - C = Residuals, this routine generates the 

"C" which represents the calculated position or velocity. The "0" 

represents the actual observation.] Subroutine OBSPCE was modified 

to support the NORAD true equator and mean equinox of epoch 

integration coordinate system used by the GP theories. GTDS 

subroutines ROTKEY and ROTRAN were also modified to support this 

function. 
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3.3.8.2 Tracking Oata (OBSTRK) 
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Subroutine OBSTRK computes the tracking data observations 1,' l~ 

for use in the oe program. This subroutine also was modified to nl'. 
support the NORAO true equator and mean equinox of epoch ~ 'v. 

P/' integration coordinate system used by the GP theories. This also 

required modification of GTOS subroutines TRANF and TRKPRT. 

3.3.9 Parameter Reset (PSET) 

GTOS subroutine PSET resets the dynamic parameters based on 

the adjusted values from the estimation array. In particular, this 

routine computes new Keplerian elements from the adjusted mean 

equinoctial elements. These new Keplerian elements subsequently 

are used in subroutines RESSGP, RESGP4, and RESHAN to restart the 

OC. PSET required a minor modification to support the NORAO GP 

drag solve-for option. 

3.3.10 Output Report Modifications 

Several GTOS output report routines were modified including 
1. :x 

CROLBL, OUTCRO, OUTOC2, OUTOC4, OUTOC6, OUTOC7, OUTOC8, 

OUTGEN, OUTOG1, OUTOUT, OUTPAR, OUTSEC, OUTSLV, OUTWSD., and 

PRINT. 
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3.4 Output Data 

Standard GTDS orbit generator print outputs and coordinate 

systems are supported. In particular, the capability exists to 

generate Mean of 1950.0 OR81 files with the NORAD GP theories. 

This capability is possible because the output routines have access 

to the NO RAD true equator and mean equinox of epoch to Mean of 

1950.0 coordinate frame transformation matrix. 

The Differential Correction Summary Report provides the 

fo"owing converged DC epoch element set data: 

1. Mean equinoctial elements: a, h, k, p, q, X (The internal 

DC solve parameters). 

2. Mean Keplerian elements: a, e, r, n, 00, NI. 

3. Mean motion and ri o I 2. 

All of the element sets are supplied in the integrator 

coordinate system. These output requirements are designed to allow 

a subsequent Ephemeris Generation run with the same satellite 

theory as was used in the DC. 

3.5 SPADOC Subroutines 

As a result of the cooperation of the USAF Electronic Systems 

Division (ESD) and Ford Aerospace and Communication Corporation 

(FACC), this implementation presently includes forty-.seven SPADOC 

subroutines and block data modules. The SPADOC 48 Fortran source 

code for the SGP, GP4/DP4, and HANDE theories, along with the 

supporting utilities comprise on the order of several thousand 
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Fortran 77 source instructions. 

description of the key subroutines: 

This section provides abrief 

SGPAST: Driver for the SGP theory (CPC11 ASTSGP). See Figure 3-3. 

If the initialization control item is set, the routine SGPINT is called 

to compute initialization factors. The routine SGPUPD is always 

called to calculate ephemeris data at the requested time. 

G P4AST: Driver for the GP4 and DP4 general perturbation theories 

(CPC ASTGP4). See Figure 3-4. If the initialization control item is 

set, the routine GP4INT is called to compute initialization factors. 

The routine GP4UPD is always called to calculate ephemeris data at 

the requested time. 

HANAST: Driver for the HANDE general perturbation theory (CPC 

ASTHAN). See Figure 3-5. If the specific request type is INITIALlZE, 

the eleven HANDE time derivatives are computed and returned in the 

common AELSET to complete the element set record. If the request 

type is PRE-UPDATE, the only initialization completed is the part 

that is needed by the update and this initialization is not saved in 

the element set record. Then, an update foliows. Where as if the 

request type is for an UPDATE ONLY, input elements and pre-update 

factors are used to compute position and velocity vectors, and mean 

1 1 A Computer Pro gram Component (CPC) consists of a functional or 
logically distinct part of a computer software configuration item (CSCl). A CSCl 
is a computer program that satisfies an end-use function and is contractually 
designated for configuration management. CPC's may be given additional 
designations (e.g., modules, routines) as desired by the project [75,76]. 
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and osculating elements at the input request time. Results are 

available in the common AEPHOT. 

G2MAST: This subroutine is part of a FACC Block B modification to 

the SPADOC code. This subroutine creates the capability for 

SGPAST, GP4AST and HANAST to access G2 partial derivative data. 

G2MAST is an executive routine. This routine makes the appropriate 

calls for element set transformations and G2 matrix computations. 

G2MEOE: Calculates the G2 partial derivatives of the satellite 

current mean equinoctial elements with respect to the epoch mean 

( n2· o ). orbital elements and In equation form these derivatives are: 

(3.16) 

Appendix B gives the equations used in this subroutine. 

DSPAST: See Figures 3-4 and 3-5. An executive routine which is the 

driver for deep space modeling (CPC ASTDSP). This routine always 

calls the subroutine DP41 NT12 to compute initialization terms. 

Optionally, this routine can call DSPSEC, which computes deep space 

secular effects or DSPPER, which computes lunar-solar periodic 

effects on deep space orbits and updates the mean longitude, 

ascending node, argument of perigee, eccentricity and inclination. 

12 The SPADOC routine DSPINT was renamed DP4INT since GTDS had 
previously employed the name DSPINT in its data simulation program. 
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HA NP ER: An executive routine which acts as a driver for HANDE 

initialization perturbations effects. The modeling includes drag and 

a deep space geopotential gravity field. 

HANPAV: Computes averages for HANDE initialization perturbations 

effects on the mean motion and eccentricity. The modeling includes 

drag and a deep space geopotential gravity field. 

HA ND 0 T: This routine determines if the ballistic coefficient, 8, is 

non-zero, and if so, it sets appropriate parameters and calls the 

subroutine HANDRG to incorporate atmospheric effects. 

HANDRG: Computes the effects of atmospheric drag using a thirteen 

point Gauss-Legendre quadrature for each step in the integration. 

This routine calls the subroutine ATMAST to determine solar flux 

data and geomagnetic indices based on a specified atmospheric 

density model. 

ATMAST: An executive routine for the dynamic atmospheric density 

modelling which calls the following: 

1. Position of the sun (SUNAST). 

2. Atmospheric data initialization (ATMINT). 

3. Three atmospheric density models: ATMJ64 - Jacchia 

1964, ATMJ70 - Jacchia 1970 and ATMSIS - Mass 

Spectrometer and Incoherent Scatter. 

4. One other atmospheric density model stub (ATMOTH - A 

Government furnished model). Draper Laboratory intends 
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to add an additional capability to their orbit 

determination system by incorporating a modified 

Harris-Priester atmospheric density model into this 

subroutine. See Figure 3-5. 
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Chapter 4 

ORBIT GENERATOR TEST CASES 

The primary purpose of this chapter is to establish credibility 

in the accuracy with wh ich the NORAD theory orbit generators have 

been incorporated into the Draper Laboratory's version of GTDS. As 

mentioned in Chapter Three, throughout this incorporation an 

intentional effort has been made to use the actual SPADOC Fortran 

source code to the maximum extent possible. This ground rule has 

proven to be the key to obtaining the excellent results of this 

chapter which establish strong benchmarks for this incorporation. 

The first three sections present a comparison of externally 

generated GP orbit generator test cases and those same test cases 

run with the NORAD theories incorporated into GTDS. The SGP test 

case is taken from Spacetrack Report # 3 [5]. Test cases for 

GP4/DP4 and HANDE were provided by the Ford Aerospace 

Corporation (FACC). These test cases include the following orbit 

types: low Earthorbit, geosynchronous, a low Earth orbit near 

decay, and an eccentric high altitude orbit. A summary of the 

satellite orbital elements used in the orbit generator test cases is 

presented in Table 4-1. Aside from the SGP comparison, wh ich had a 

maximum error of 3.3 meters, the GP4/0P4 and HANDE comparisons 

had a maximum error of 15.34 centimeters. This error occurred in 

the HANDE test case after ten days for a low Earth orbit. 
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Tab1e 4-1. Characteristics of the Sate11ites Used in the Orbit Generator Test Cases 

spacetrack #3 LEO Geosynchronous Near Decay Mo1niya 
#4282 #7250 #9494 #10455 

nO (Revs/Day) 16.05824 15.772666 1.0026656 16.063255 2.005933 

aO (Km) 6637.685619 6716.32803 42,166.20857 6635.0814 26,557.7272 

eO 0,0086731 0.030651 0.00021009 0.0020164 0.73913 

i 0 (Degrees) 72.8435 49.4666 0.0099 64.9567 63.178 

f!o (Degrees) 115.9689 256.4375 249.2067 228.6393 315.2519 

Wo (Degrees) 52.6987 262.1979 276.0882 271.2229 282.1774 

MO (Degrees) 110.5714 128.473 194.66939 88.7752 10.6252 

Period (Minutes) 89.69837 91.297184 1436.171697 89.164558 717.87014 

Epoch Time 

(Yr/Mo/Day 80/10/1 e 84/0601 ~) 84/07/06 

Hr/Min/Secs) 23/41/24.114 18/30/18.849 7/22/10.765 3/56/9.677 3/7/14.226 
-- .-
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The last section of Chapter Four presents an analysis of the 

accuracy achieved in the incorporation of the orbit generator partial 

derivatives for each NORAO theory into GTOS. There were no 

externally generated partial derivative test cases available for this 

analysis. Nonetheless, an investigation of the elements of the state 

transition matrix for each NORAO theory indicates that the NORAO 

orbit generator partial derivatives have been accurately 

incorporated. Additionally this section points out some of the 

differences in the equations which generate the partial derivatives 

for each theory type. These differences are depicted in Appendix B 

in which the partial derivative equations for each NORAO theory have 

been decoded from the SPAOOC software. 

The results of the test cases used in this analysis are limited 

to point comparisons fram other similar test cases. However, with 

the use of the NORAO theory test drivers1 , additional comparisons 

could include statistics and graphs. (See section 6.3 for details.) 

1 F ACC has supplied the NORAD theory stand alone orbit generator test drivers 
to Draper Laboratory. 
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4.1 SGP Orbit Generator 

The test case used for this comparison was taken from Spacetrack 

Report # 3 [5] and the results are shown in Table 4-2. In this table, 

a maximum error of 3.32 meters is indicated in the z-component of 

position at twelve hours past epoch. The errors in this orbit 

generator test case are approximately one order of magnitude 

greater, relative to the GP4/DP4 and the HANDE test cases. This 

,~~ , discrepancy is most likely due to the fact that the results given in 

~, ~ .:-\.l ~ [5] were generated on the Honeywell 6080 with a mix 01 single and 

~~j; double precision arithmetic; however, both the SPADOC soltware 

(}J\JV ijJ-'rJJ ::1) and GTDS are coded exclusively in double precision on the IBM. One 

oP ~ Yi.y\ other observation worth noting is that Table 4-2 shows that the 
/' JY\. \ ryr , 
") ~ c- -f(, position errors are not monotonically increasing in magnitude. With 

~Yv..·" the exception 01 the twelve hour z-component, six signilicant digits 

~v were matched throughout the comparison thereby establishing a very 

good SGP orbit generator benchmark. 
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TSINCE 
Epoch 
(Hrs) 

0 

6 

12 

18 

24 

- - - - ... -

) 

Table 4-2. Benchmark of Spacetrack Report #3 SGP Test Case 

Position Spacetrack #3 GTDS Difference 
Component (Kilometers) (Kilometers) I (Meters) I , 

X 2328.96594238 2328.966084 0.14162 ! 

Y -5995.21600342 -5995.216040 0.03658 
Z 1719.97894287 1719.978736 0.20687 

I 

X 2456.00610352 2456.006670 0.56648 
Y -6071.94232177 -6071.942438 0.11623 
Z 1222.95977784 1222.958812 0.96584 

X 2567.39477539 2567.396198 1.42261 ! 

Y -6112.49725342 -6112.497355 0.08158 
Z 713.97710419 713.9737757 3.32849 

..., a I 

X 2663.03179932 2663. 03 2198 0.91868 ! 

Y -6115.37414551 -6115.373847 0.29851 
Z 195.73919105 195.7363780 2.81305 

X 2742.85470581 2742.855361 0.65519 I 

Y -6099.13580322 -6099.135509 0.29422 
Z -328.86091614 -328.8628486 1.93246 

~~~--~ --------------_ .. -



4.2 GP4/0P4 Orbit Generator 

The Ford Aerospace Corporation supplied four test cases for 

this orbit generator which include the following orbits: NSSC 4282 

- low Earth orbit, NSSC 7250 - geosynchronous, NSSC 9494 - low 

Earth orbit near decay, NSSC 10455 - Molniya (high eccentricity). 

Table 4-1 summarizes the characteristics of these orbits. Tables 

4-3 through 4-6 present the outstanding results of the position 

comparisons. As in the SGP test case, all of the GP4/0P4 results 

indicate that there is no secular growth in the errors. It should be 

noted that the block data PHYSBOO was used to generate the results 

of this section and in all the GTOS data twelve significant digits 

were used. 

In the low Earth orbit (4282) test case (Table 4-3), a maximum 

error of 0.043 millimeters occurred in the z-component of the 

position vector after eighteen hours. In general, all the results 

show that the errors can be attributed to roundoff errors. 

Throughout the comparison the position components matched to 

eleven significant digits with only two exceptions. 

The geosynchronous orbit (7250) test case results (Table 4-4) 

indicate a maximum error of 6.19 millimeters in the y-component of 

the position vector after twenty-four hours. An accuracy of at least 

eight significant digits was obtained for this case. 

The results of the low Earth orbit (9494) near decay (Table 4-

5) indicate a maximum error of 0.058 millimeters in the x-

component of position after twelve hours. These results are 
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comparable to the results of the low Earth orbit (4282). Throughout 

this comparison an accuracy of eleven significant digits of accuracy 

was obtained with three exceptions. 

The high eccentricity test case (10455) results (Table 4-6) 

indicate a maximum error of 10.34 millimeters in the z-component 

of position after twenty-four hours. With two exceptions, at least 

nine significant digits of accuracy were obtained throughout the 

entire comparison. 

Overall, the results of the GP4/0P4 comparisons establish an 

excellent set of benchmarks. The comparison results have a 

maximum position error of 10.34 millimeters and in general, these 

results indicate that nine significant digit accuracy was obtained in 

the geosynchronous and Molniya cases, and an eleven digit accuracy 

in the low altitude case. 
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Table 4-3. Benchmark of FACC GP4/DP4 Test Case for Satellite #4282 (Low Earth Orbit) 

TSINCE 
Epoch Position FACC FACC GTDS Difference 
(Hrs) Component ( Earth radii) (Kilometers) (Kilometers) I (Millimeters) I 

X 0.161774617934 1031.8203527 1031.82035275 0.02 
0 Y -0.961838779516 -6134.737584 -6134.73758398 0.03 

Z 0.447368026043 2853.3736648 2853.37366418 0.01 

X -0.920145368523xl0- 1 -586.88113799 -586.881138006 0.01 
6 Y -0.103889077286xl0 1 6626.1855996 -6626.18559958 0.02 

Z 0.208631155884 1330.6776774 1330.67767743 0.02 

X -0.334409454982 -2132.9086491 -2132.90864915 0.01 
12 Y -0.99727460390 -6360.7520557 -6360.75205574 0.006 

Z -0.485602199737x10- 1 -309.7236386 -309.723638621 0.02 

X -0.535177137495 -3413.4320318 -3413.43203185 0.03 
18 Y -0.843535895042 -5380.1858159 -5380.18581592 0.009 

Z -0.297487105318 -1897.4129184 -1897.41291847 0.043 

X -0.669190791127 -4268.1892065 -4268.18920656 0.04 
24 Y -0.597153076274 -3808.7229361 -3808.72293614 0.02 

Z -0.512437089011 -3268.3929327 -3268.39293272 0.007 
- - - ---- -
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Table 4-4. Benchmark of FACC GP4/DP4 Test Case for Satellite #7250 (Geosynchronous) 

TSINCE I 

Epoch Position FACC FACC GTDS Difference I 

(Hrs) Component (Earth radii) (Kilometers) (Kilometers) I (Millimeters) 11 

X 0.661214394109xl01 42173.146695 42173.1466656 0.10 
0 Y -0.635386758987x10-2 -40.52582526 -40.5258252576 0.06 

Z 0.159957206443x10-2 10.202286569 10.2022865705 0.03 

X -0.200184702687xl0-1 -127.68050581 -127.680506256 0.44 I 
6 Y 0.661042407104xl01 42162.177132 42162.1771320 0.34 

i 

Z 0.868146992809x10- 3 5.5371587021 5.53715871976 0.02 I 

I 

....... X -0.660927039255xl01 -42154.818815 -42154.8188145 0.69 1 

12 Y -0.517543340474x10- 1 -330.09612934 -330.096130933 1.55 
Z -0.131313307985xl0-2 -8.3753399934 -8.37534005762 0.022 I 

~ 
....... 

I 

X 0.820746321453x10- 1 523.48308386 523.483087368 3.47 
! 

18 Y -0.661066187570xl01 -42163.693883 -42163.6938815 2.47 I 

Z -0.826162282119x10-3 -5.2693745537 -5.26937456658 0.0006 

X 0.661126734454x101 42167.555645 42167.5556431 1.47 
24 Y 0.107052137824 682.79298705 682.792993249 6.19 

Z 0.104710850004x10-2 6.6785993726 6.67859937459 0.002 
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Table 4-5. Benchmark of FACC GP4/DP4 Test Case for Satellite #9494 (Near Decay) 

Position FACC FACC GTDS Difference 
Component (Dimensionless) (Kilometers) (Kilometers) I (Millimeters) I 

X -0.687119006419 -4382.5377839 -4382.53778400 0.05 
Y -0.781768800324 -4986.2269472 -4986.22694725 0.02 
Z 0.184675162429x10-2 11.778831144 11.7788311711 0.03 

X -0.667858041046 -4259.6887466 -4259.68874662 0.03 
Y -0.793838033395 -5063.2061451 -5063.20614512 0.02 
Z 0.853045788077x10- 1 544.0841197 544.084119853 0.05 

X -0.643815752589 -4106.3437851 -4106.34378514 0.058 
Y -0.800568137397 -5106.131657 -5106.13165701 0.04 
Z 0.168104144987 1072. 1 909307 1072.19093078 0.0016 

X -0.615005646980 -3922.5890422 -3922.58904220 0.0027 
Y -0.802059641786 -5115.6446733 -5115.64467336 0.04 
Z 0.249593209221 1591.9391835 1591.93918349 0.0016 

X -0.581481613572 -3708.7682314 -3708.76823137 0.0027 
Y -0.798452249411 -5092.6362378 -5092.63623779 0.0007 
Z 0.329129952129 2099.2352672 2099.23526722 0.055 

~ ~ - - - -- -
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TSINCE 
Epoch 
(Hrs) 

0 

6 

12 

18 

24 

---- - .. _----

) 

Table 4-6. Benchmark of FACC GP4/DP4 Test Case for Satellite #10455 (Molniya) 

i 
Position GTDS Difference 

I 
FACC FACC 

Component (Dimensionless) (Kilometers) (Kilometers) I (Millimeters) I 
X 0.115286773337x101 7353.1460406 7353.14604055 0.03 
Y -0.1159243821xl01 -7393.8135883 -7393.81358823 0.02 I 

-0.190629924024xl0- 1 -121.58633904 -121.586339043 0.01 
I 

Z I 
I 

X 0.916204871837 5843.6783602 5843.67836006 0.13 

I 
Y 0.352520453626xl01 22484.230434 22484.2304347 0.18 
Z 0.622392867309xl0 1 39697.057307 39697.0573170 0.34 

I 

X 0.124827859414xl01 7961.6893908 7961.68939302 2.24 I 
Y -0.117434234091xl0 1 -7490.1139865 -7490.11398665 0.11 
Z 0.974114386133xl0- 1 621.303306 621.303308616 2.60 I 

I 

X 0.897349428439 5723.4157967 5723.41579546 1.24 ! 
Y 0.354020047093x10 1 22579.87653 22579.8765309 0.25 
Z 0.621376717934xl01 39632.245928 39632.2459271 1.24 I 

I 

X 0.133759001734xl01 8531.3297052 8531.32971288 7.63 I 

Y -0.118404254923xl0 1 -7551.9832245 -7551.98322500 0.27 I 

Z 0.213383228395 1360.9870374 1360.98704775 
I 

---------



4.3 HANOE Orbit Generator 

One test case was available from FACC and was exercised 

using the eighteen parameter HANOE input option. However, the 

extra time derivative terms, which are required in the eighteen 

parameter input for the HANOE orbit generator, were computed on a 

calculator with only eight digit accuracy. Also, this set of data is 

different from the other test cases in that it covers a ten day time 

span wheras all the other test cases are for one day. This test 

utilized data from the low Earth orbit (4282) and the comparison 

results are indicated in Table 4-7. This table shows a maximum 

error of 15.34 centimeters which occurs in the z-component of 

position after ten days. Throughout this ten day period an accuracy -

of at least seven significant digits was obtained in all position 

components. The HANOE results are comparable to the GP4/0P4 

results of section 4.2 and establish an excellent benchmark for the 

HANOE orbit generator. 

Although this test did establish an outstanding numerical 

benchmark for HANOE, it did not test the complete functionality of 

the HANOE theory. For this application, only the pre-update and 

update functions are tested and not the initialization functionality. 
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Table 4-7. Benchmark of FACC Hande Test Case for Satellite #4282 (Low Earth Orbit) 

TSINCE 
Epoch position FACC FACC GTDS Difference 
(Hrs) Component (Dimensionless) (Kilometers) (Kilometers) (Millimeters) 

X 0.161738467798483 1031.5897823 1031.589782 0.25777165 
0 Y -0.961828956752921 -6134.6749331 -6134.674933 0.06066125 

Z 0.447408218797824 2853.6300196 2853.630020 0.4478433 

X 0.894397013370494 5704.5848949 5704.584874 20.870665 
10 Y 0.533423985035906 3402.2501888 3402.250284 95.24068 

Z -0.189409785858578 1208.0811845 -1208.081031 153.47239 
----- ----------_ ... - -- ------

/-



4.4 State Transition Matrix Analysis 

This section analyzes the accuracy of the results attained for 

the incorporation of the SPAOOC orbit generator partial derivatives 

into Oraper Laboratory's GTOS. Precisely, these are the partial 

derivatives of current mean equinoctial orbital elements with 

respect to the epoch mean equinoctial elements, and are represented 

as folIows: 

a aj (t) 

a a. (0) 
I (3.16) 

These partial derivatives are members of both the "Modified" 

AGRSTM matrix2 and the GTOS 82 matrix. See Figures 3-7 and 3-8 

for an exact description of the two arrays. 

This analysis did not have access to externally generated 

partial derivative test cases. Therefore, to establish confidence in 

the accuracy of the GP theory partial derivatives, a three step 

approach was utilized. This included the following: 

2 

1. A initial comparison of OSST partials to SGP partials to get a 

preliminary accuracy estimate. 

For the purposes cf this analysis the state tranSItIOn matrix will be defined to 
include only the first six rows and columns of the AGRSTM matrix. 
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2. Use of a single-sided finite differencing technique to ensure 

that the correct partials were being generated. (See 

Appendix D.) 

3. Additional comparisons of SGP, DP4/DP4, and HANDE partial 

derivatives to the DSST partial derivatives. The DSST orbit 

generator was configured to include only the J 2' J 3' and J 4 

zonal harmonics in its geopotential model and the test case 

used for comparisons is the Spacetrack SGP test case as 

described in Table 4-1. 

The initial step was to compare partial derivatives generated 

by the DSST orbit generator with a geopotential model designed to 

replicate the behavior of the SGP orbit generator. The partial 

derivatives, and the differences between the DSST and SGP partials 

are presented in Tables 4-10 and 4-11 respectively. The initial 

comparison produced promising results. Thirty-four of thirty-six 

partial derivatives were within 1.28% agreement between DSST and 

SGP. Considering the differences between the DSST and SGP orbit 

generators, and the fact that a single-sided finite differencing 

technique was utilized for the analysis, the 1.28% agreement seems 

quite reasonable. However, two of the partial derivatives, 

a A. and.11:., were in disagreement by more than 30%. These 
aha ak a 

larger errors caused some concern since they suggested a possible 

error. In order to ensure that the two partial derivatives of concern 
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were being generated correctly, it was necessary to accomplish a 

finite differencing analysis. 

4.4.1 Finite Differencing 

A single-sided finite differencing technique was used to 

analyze two partial derivatives, a A. and 1..1:... The specific 
ah o ak o 

equation used in this analysis is given in Appendix D and is as 

foliows: 

f (x 0 + ~ - f (x 0) == [a ;~) ] 
x =x 0 (D.3) 

Using equation (D.3), the necessary forms of the partial derivative 

equations are as folIows: 

A. (perturbed) - A. (unperturbed ) a A. 

(4.1 ) 

and, 

A. (perturbed) - A. (unperturbed ) a A. 

ß h o - a ho (4.2) 

148 

--



The NORAD orbit generators in GTDS assume Keplerian element input 

(See Chapter Three). Therefore, further specification of the test 

case was required. Since, 

k = e cos (n + 0)) = e cos 1t (4.3) 

and, 

h = esin (n + 0)) = esin 1t (4.4) 

the eccentricity was chosen as the parameter to be perturbed, while 

setting 1t equal to zero and then to ninety degrees. With these given 

constraints, k is equal to e when 1t is zero and h is equal to e when 

1t is ninety degrees. Now equations (4.1) and (4.2) can be modified 

as ' foliows: 

A. (perturbed ) - A. (unperturbed ) (JA. 

(For 1t = 0°) ß e o 
- (J k o (4.5) 

A. (perturbed ) - A. (unperturbed ) (JA 

(For 1t = 90° ) ß e o 
- (J ho (4.6) 

Given equations (4.5) and (4.6) it was necessary to make four SGP 

orbit generator runs to complete the analysis. Again, all runs 

utilized the Spacetrack test case as described in Table 4-1 with the 

exception that 1t was set to zero degrees for two of the runs and to 



ninety degrees for the others. The Ll e was .0002, and for the 

purposes of this analysis, the eccentricity value listed in Table 4-1 

was designated as the perturbed value. The partial derivatives that 

were obtained from finite differencing were compared to both the 

SGP partials and the DSST partials that were generated with the 

modified geopotential model as previously described. A summary of 

all of these results is presented in Tables 4-8 and 4-9. 80th tables 

indicate that the partial derivatives computed by finite differencing 

the SGP theory compare to within 1 - 2% of the SGP analytic 

partials. Additionally, the results indicate that the DSST partials do 

not compare favorably with the finite difference calculated partials. 

The combination of these two observations indicates that the SGP 

orbit generator was propagating the appropriate partial derivatives 

based on the "SGP mean" elements. 
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VI 
I--' 

SGP Analytic 

SGP Finite Diff 

Il '" Error 

DSST 

SGP Finite Diff 

Il '" Error 

Table 4-8. 

Epoch 

-2.961452285747845x10-3 

-2.995x10-3 

1.1328 

Epoch 

0 

-2.995x10- 3 

N/A 
--

dA 
Finite Differencing Analysis for dk O 

SGP Analytic vs SGP Finite Differencing 

TIM E 

1 Day 3 Days 

-5.922904571495689x10- 3 -1.184580914299138x10- 2 

-5.99x10- 3 -1.1985x10-2 

1.1328 1.17502 

DSST vs SGP Finite Differencing 

TIM E 

1 Day 3 Days 

-4. 369445765706x10- 3 -1.303698034099x10-2 

-5.99x10- 3 -1.1985x10-2 

37.08833 8.0692 
- - -------------

) 

I 
I 
: 

5 Days 

-1.776871371448707x10-2 

-1.797x10- 2 

2.01286 
- ------ -- ----~ -- ------------

5 Days 

-2.160983331011x10- 2 

-1.797x10- 2 

16.84341 
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SGP Analytic 

SGP Finite DUf 

f> ... Error 

DSST 

SGP Finite DUf 

f> ... Error 

Table 4-9. .. . ff . 1· f a A F1n1te D1 erenc1ng Ana YS1S or ah 

SGP Analytic va SGP Finite Differencing 

TIM E 

Epoch 1 Day 3 Day 

-2.961452285747845x10-3 -5.922904571495689x10- 3 -1.184580914299138x10-2 

-2.995x10-3 -5.99x10- 3 -1.198x10-2 

1.1328 1.1328 1.1328 

DSST VB SGP Finite Differencing 

TIM E 

Epoch 1 Day 3 Day 

-2.168404344971x10-19 -4.372782553122x10- 3 -1.306479060579x10-2 

-2.995x10-3 -5.99x10- 3 -1.198x10-2 

N/A 36.98371 8.30316 
- - ---

) 

o 

5 Day , 

-1.776871371448707x10-2 

-1.7975x10-2 

-1.1609 , 

5 Day 
I 

I 
-2.168083327141x10-2 

-1.7975x10-2 

17.0926 I 

I 

) 



4.4.2 SGP State Transition Matrix 

Tables 4-10 and 4-11 present both the DSST and SGP state 

transition matrices at one day past epoch. An initial observation of 

Table 4-11 indicates that only a A. and ~ are significantly 
aho ak o 

different from the DSST values. Except for these, the SGP partial 

derivatives are within 1.28% of the DSST partial derivatives. 

However, studying the equations wh ich are unique to the SGP theory, 

as listed in Appendix S, reveals a possible explanation for these 

discrepancies. 

There are three partial derivative equations that differ from 

the DSST equations3 and they correspond to the following partials: 

a A. and a A. 
a h o ' a k o (4.7) 

After examining the applicable equations, the only difference is 

found in the definition of the first time derivative of the mean 

longitude at epoch, Lo . The SGP theory uses the following definition: 

3 

(4.8) 

It should be noted that Appendix C establishes that the DSST and SGP 
equations are equivalent with the exception of the partial derivatives 
listed in equation (4.7). 
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while DSST uses a different definition: 

(4.9) 

This algorithmic difference is directly related to the unique 

properties of the Kozai mean motion used in the SGP theory. Thus 

the difference in the partial derivatives can be attributed to the 

difference in the "DSST mean" elements versus the "SGP mean" 

elements. 
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Table 4-10. DSST B2 Matrix vs SGP "Modified" AGRSTM Array At Epoch + 1 Day 

1 7 13 19 25 31 
OSST 1.000 0 0 0 0 0 

--------.,.------- ---------------- ---------------- ---------------- ---------------- ----------------

SGP 0.99980619 0 0 0 0 0 

2 8 14 20 26 32 
OSST -3.829448979 0-7 9.96192463 0-1 -8.72617836 0-2 6.64434462 o-lt -3.23670195 O-lt 0 

--------..,.------- ---------------- ---------------- ---------------- ---------------- ----------------
SGP -3.80024955 0-7 9.96190373 0-1 -8.72857837 0-2 6.59378864 o-lt -3.21157628 O-lt 0 

3 9 15 21 27 33 
OSST -1.11352531 0-7 8.72385292 0-2 9.96180397 0-1 1.93201851 o-lt -9.41156133 0-5 0 

..... ---------------- ---------------- ---------------- ---------------- ---------------- ----------------
V\ 
V\ SGP -1.11140333 0-7 8.72627065 0-2 9.96178273 0-1 1.93295290 0-3 -9.41465680 O-lt 0 

4 10 16 22 28 34 
OSST -6.89903301 0-6 8.80930579 0-5 -4.44556613 o-lt 9.49664730 0-1 -2.05709117 0-2 0 

---------------- ---------------- ---------------- ---------------- ---------------- ----------------

SGP -6.89976339 8.92092790 0-5 -4.45142679 o-lt 9.49657500 0- 1 -2.05837484 0-2 0 

5 11 17 23 29 35 
OSST -1.59306668 0-5 2.03417215 o-lt 1.02653282 0- 3 -6.93254087 0-2 1.05450487 0 

---------------- ---------------- ---------------- ---------------- ---------------- ----------------

SGP -1.59355625 0-5 2.06036056 o-lt -1.02809307 0- 3 -6.93514190 0-2 1.05451440 0 I 

6 12 18 24 30 36 
OSST -2.27190945 0-2 -8.70324152 o-lt 4.39204055 0- 3 -2.28815524 0-1 1.11464369 0-1 1.0 

---------------- ---------------- -- .... _------------ ---------------- --~------------- ----------------

SGP -2.27548577 0-2 -5.95664077 o-lt 2097228613 0- 3 -2.28885378 0-1 1.11481106 0-1 1.0 
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0.01948 

-0.76355 

-0.1905641 

0.010586 

0.030731 

0.1574147 

Table 4-11. DSST B2 Matrix - SGP "Modified" AGRSTM Array At Epoch + 1 Day 

1 7 13 19 25 31 
0.0 0.0 0.0 0.0 0.0 

2 8 14 20 26 32 
0.0002097 0.027503 0.760887 -0.7762738 0.0 

3 9 15 21 27 33 
-0.027714 0.0002132 -0.048363 0.03289 0.0 

4 10 16 22 28 34 
-1.267093 0.1318315 0.0007613 0.062402 0.0 

5 11 17 23 29 35 
-1.287423 0.1519922 0.037519 -0.0009037 0.0 

6 12 18 24 30 36 
-31.558365 32.32562 0.030528 -0.015015 0.0 

-~ -_ .. _--_.-

) ) 



4.4.3 GP4/DP4 State Transition Matrix. 

Tables 4-12 and 4-13 present both the DSST and GP4/DP4 

state transition matrices at one day past epoch. An initial 

observation of Table 4-13 indicates that the GP4/DP4 partial 

derivatives compare extremely weil with the DSST partial 

derivatives. The worst comparison is for ; ht... , which is within 
o 

1.32% of the DSST value. Again, looking at the applicable equations 

in Appendix Breveals that GP4/DP4 has a unique definition of Lo 

which foliows: 

(4.10) 

at... at... at... 
As in SGP, this different definition affects a a

o
' a h

o 
' and a k

o 
. 

A comparison of elements (6), (12) and (18) for Tables 4-9, 4-13 and 

4-15 indicates that the corresponding GP4/DP4 partial derivatives 

are much closer to the DSST partial derivatives than SGP, but not 

quite as good as the HANDE partials. This is a consistent 

observation since the HANDE equations for these partials are 

equivalent to the DSST equations for these partials. 
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Table 4-12. DSST B2 Matrix vs GP4/DP4 "Modified" AGRSTM Array At Epoch + 1 Day 

1 7 13 19 25 31 
1.000 0 0 0 0 0 

---------------- ---------------- ---------------- ---------------- ---------------- ----------------
0.99984296 0 0 0 0 0 

I 

2 8 14 20 26 32 1 

-3.829448979 D-7 9.96192463 D- 1 -8.72617836 0-2 6.64434462 o-It -3.23670195 O-It 0 

---------------- ---------------- ---------------- ---------------- ---------------- ----------------

-3.82187303 0-7 9.96189674 0-1 -8.72941820 0-2 6.58236154 D-It -3.20601058 D-It 0 

3 9 15 21 27 33 
-1.11352531 0-7 8.72385292 D-2 9.96180397 0-1 1.93201851 o-It -9.41156133 0-5 0 
---------------- ---------------- ---------------- ---------------- ---------------- ----------------
-1.12042753 0-7 8.72709864 9.96177511 0-1 1.92969756 o-It -9.39880131 0-5 0 

4 10 16 22 28 34 
-6.89903301 D-6 8.80930579 D- 5 -4.44556613 D-It 9.49664730 D- 1 -2.05709117 D-2 0 
---------------- ---------------- ---------------- ---------------- ---------------- ----------------

-6.89705916 0-6 8.91249345 0-5 -4.44721811 o-It 9.49572744 D-1 -2.04950242 0-2 0 

5 11 17 23 29 35 
-1.59306668 D-5 2.03417215 o-It 1.02653282 0-3 -6.93254087 D-2 1.05450487 0 

---------------- ---------------- ---------------- ---------------- ---------------- ----------------

-1.59275011 D-5 2.05817793 D-It -1.02700397 D-3 -6.95853765 D-2 1.05460781 0 

6 12 18 24 30 36 
-2.27190945 D-2 -8.70324152 o-It 4.39204055 0- 3 -2.28815524 D':" 1 1.11464369 D-1 1.0 

---------------- ---------------- ---------------- ---------------- ---------------- ----------------

-2.27505835 -8.81860787 D-It 4.40037043 D- 3 -2.28191759 D- 1 1.111432710- 1 1.0 

) 
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0.015704 

-0.19889 

0.61985 

-0.02861 

-0.0198717 

0.138601 

) 

Table 4-13. DSST 82 Matrix - GP4/DP4 "Modified" AGRSTM Array At Epoch + 1 Day 

1 7 13 19 25 31 : 
0.0 0.0 0.0 0.0 0.0 I 

I 

2 8 14 20 26 321 
0.0002799 0.03712 0.93286 -0.948229 0.0 i 

, 

3 9 15 21 27 331 
-0.037205 0.0002897 0.1201308 -0.135578 0.0 

, 

I 

4 10 16 22 28 341 
-1.17134 0.0371601 0.0099567 -0.3689068 0.0 

I 

5 11 17 23 29 35 1 

-1.1801252 0.045897 0.374996 -0.0097619 0.0 , 

6 12 18 24 30 36' 
1.325556 -0.189658 -0.272606 0.28807 0.0 



Further analysis of the equations wh ich are unique to the 

GP4/0P4 theory indicates that four more partial derivatives are 

affected. These partials are all a function of the variable PAR3, 

wh ich in turn is a function of the GP4/0P4 drag parameter, BSTAR. 

The following partial derivatives are affected: 

(4.11) 

Respectively, these partials correspond to elements (8), (9), (14) 

and (15) of the state transition matrix. A comparison of these 

elements in Tables 4-9, 4-13 and 4-15 indicates a large error 

between the GP4/0P4 values and the HANOE values, but a relatively 

. sm all error between the GP4/0P4 and SGP values. Both of these 

observations are consistent, but for different reasons. The 

comparison of Tables 4-9 and 4-13 is consistent because of a 

software design that defines the R3 field of the ELEMENT3 input card 

in the GTOS Ephemeris Generation Program. For these test cases, 
- 4 

that field contains a value4 of 0.66816 x 10 . In order to generate 

the results for the SGP comparison (Table 4-9), this R3 value is not 

applicable because there are no drag dependent partials in the state 

transition matrix for SGP. However, when generating the GP4/0P4 

results, this value represents the parameter BSTAR with the units 

(1/Earth Radius). Therefore, BSTAR is properly utilized by the 

GP4/0P4 orbit generator and, accordingly, the drag dependent partial 

4 This value is from the Spacetrack SGP test case as previously described. 
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derivatives are calculated correctly. Another reason for better 

agreement between the GP4/0P4 and SGP elements is that the OSST 

geopotential model utilized is very compatible with the SGP theory 

and with the GP4/0P4 theory, for this low altitude test case. 

The reason that the comparison of Tables 4-13 and 4-15 is 

consistent is a bit more complicated. An initial analysis indicated 

that an input data error may have caused the errors. 8y design, the 

R3 field of the ELEMENT3 card becomes the drag parameter, 8, for a 

HANOE theory type. In the HANOE run that generated the results of 

Table 4-15, the R3 value is the same as for the GP4/0P4 test case, 

but it represents a drag parameter with the units of (meters2 I 

kilogram) because the theory type is designated as HANOE. To find 

out how much this anomaly would affect the results, the applicable 

equations in Appendix 8 were investigated. The HANOE equations for 

a hand a k 
a h o ' a h o ' a ko ' a ko 

ah ak 
(4.11) 

are functions of the drag parameter and other HANOE time derivative 

terms that were not input into the OSST run. Since the OSST run did 

not input the extra drag terms and the R3 value was not changed to 

the appropriate 8 value, the comparison of the values for the (8), (9), 

(14) and (15) elements in Tables 4-13 and 4-15 is consistent. 

Another factor which would cause errors in these elements is the 

fact that the OSST geopotential model used in this test case is not 

an optimum selection for the HANOE model. 
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4.4.4 HANDE State Transition Matrix 

Tables 4-14 and 4-15 tabulate both the DSST and HANDE state 

transition matrices at one day past epoch. The values of Table 4-15 

compare very weil with the DSST values with the exception of 

elements (8), (9), (14) and (15), which correspond to the drag 

dependent partials. An inconsistency is expected for these elements 

in Table 4-15 for the reasons discussed in section 4.4.3. In 

contrast, relative to SGP and GP4/DP4, Table 4-15 shows the 

smallest errors when compared to the following DSST partial 

derivatives: 

dA. dA. 
d h ,and d k 

o 0 • (4.7) 

This observation is supported by the equations in Appendix B which 

show that the HANDE equations use the same definition of the first 

time derivative of the mean longitude at epoch as do the DSST 

equations. (See equation 4.9). Therefore, the DSST and HANDE partial 

derivative equations are equivalent for these terms. 
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Table 4-14. DSST 82 Matrix vs HANDE "Modified" AGRSTM Array At Epoch + 1 Day 

1 7 13 19 25 31 
'. 

1.000 0 0 0 0 0 
---------------- ---------------- ---------------- ---------------- ---------------- ----------------

0.99999223 0 0 0 0 0 

2 6 14 20 26 32 
-3.629446979 0-7 9.96192463 0- 1 -6.72617636 0-2 6.64434462 0-" -3.23670195 0-.. 0 I ---------------- ---------------- ---------------- ---------------- ---------------- ----------------

-3.62153692 0-7 9.96365423 0- 1 -6.307,10446 0-2 6.56460467 0-" -3.20710312 0-" 0 

3 9 15 21 27 33 
-1.11352531 0-7 8.72365292 0-2 9.96160397 0-1 1.93201651 0-" -9.41156133 0-5 0 
---------------- ---------------- ---------------- ---------------- ---------------- ----------------

-1.11025843 6.29557343 0-2 9.96530624 0-1 1.69977962 0-" -9.25306274 0-5 0 

4 10 16 22 26 34 
-6.69903301 0-6 6.80930579 0-5 -4.44556613 0-" 9.49664730 0-1 -2.05709117 0-2 0 

-~-------------- ---------------- ---------------- ---------------- ---------------- ----------------
-6.66663600 0-6 6.90231305 0-5 -4.44421362 0-" 9.49631949 0-1 -2.04633706 0 

5 11 17 23 29 35 
-1.59306666 0-5 2.03417215 0-" -1.02653262 0-3 -6.93254067 0-2 1.05450467 0 
---------------- ---------------- ---------------- ---------------- ---------------- ----------------
-1.59006322 0-5 2.05546519 0-" -1.02565034 0-3 -6.94936669 0-2 1.05453705 0 

6 12 16 24 30 36 
-2.27190945 0-2 -6.70324152 0-" 4.39204055 0- 3 -2.26615524 0- 1 1.11464369 0-1 1.0 
---------------- ---------------- ---------------- ---------------- ---------------- ----------------

-2.27296973 -6.60104491 0-" 4.39160674 0- 3 -2.27697663 0-1 1.11000026 0- 1 1.0 
-----

Note: The top element in each numbered cell 1s the OSST value and bottom value 1s the HANOE value 
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0.000767 

-0.20762 

-0.29338 

-0.17969 

-0.188533 

0.046669 
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Table 4-15. 

1 
0.0 

2 
-0.01736 

3 
4.90929 

4 
-1.05578 

5 
-1.04676 

6 
1.123758 

DSST 82 Matrix - HANDE "Modified" AGRSTM Array At Epoch + 1 Day 

7 13 19 25 31 ' 
0.0 0.0 0.0 0.0 

8 14 20 26 321 
-4.80248 0.899109 -0.91447 0.0 

, 

9 15 21 27 33' 
-0.035177 1.66866 -1.68387 0.0 

, 

I 
I 

10 16 22 28 34! 
-0.030419 0.00345 -0.52278 0.0 

I 

I 

11 17 23 29 351 
-0.085967 0.24302 -0.003051 

I 

0.0 
I 

12 18 24 30 36 
0.0098771 -0.40113 0.416582 0.0 

-- ,-

) ) 
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Excluding the drag partials, the HANDE partial derivatives are 

within 1.68% of the DSST partial derivatives. Again, in this low 

altitude test case, with a modified DSST geopotential model, these 

errors can be attributed to the differences between "DSST mean" and 

"HANDE mean" elements. 

165 



Chapter 5 

DIFFERENTIAL CORRECTION TEST CASES 

The purpose of this chapter is two fold. First, the results of 

this chapter demonstrate that the incorporated NORAD theories 

provide the appropriate data flows to accomplish differential 

correction fits to both simulated and real data. Therefore, these 

results demonstrate part of the analysis capability which exists as 

a result of incorporating the NORAD theories into Draper 

Laboratory's GTDS computer program. Additionally, this chapter 

presents an analysis of both low altitude and geosynchronous test 

cases to develop preliminary insight to the accuracy performance of 

the NORAD theories. This chapter first describes the methodology 

used in these analyses. The approach includes a Precise Conversion 

of Elements (PCE) test with the simulated data, and another 

deterministic analysis employing real tracking data. 

5.1 Test Methodology 

Deterministic methods are applied to both simulated and real 

data· error analyses within this chapter. The simulated data analysis 

applies the GTDS Precise Conversion of Elements (PCE) initialization 

procedure [56]. This procedure is a least squares differential 

correction algorithm that solves for epoch mean elements based on 
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the fit of the specified satellite theory to the ephemeris of a 

reference or "truth" position and velocity file. The PCE procedure 

has multiple applications. If the reference file is produced by a high 

precision Cowell integration, using a comprehensive force model, 

then the procedure can illustrate some of the mathematical 

limitations of the specified perturbation theory. Collins (1979) 

utilized the PCE procedure to test his semianalytical satellite 

theory for the long term motion of very high altitude orbits [66]. 

The primary advantage of this PCE application is that the 

availability of noise-free observations, (the reference position and 

velocity coordinates) with arbitrary time distribution, allows for a 

strong test of the inherent accuracy characteristics of a given 

satellite theory. 

A more limited objective for the PCE procedure is to test a 

specified GP theory against the corresponding physical model for the 

given GP satellite theory. The current GP theories include J2' J3' J4 

and drag. This procedure has been exercised. 

Another application for the PCE procedure is software 

validation. Taylor (1981) used the procedure to verify software for 

both the Semianalytical Kaiman Filter (SKF) and Extended 

Semianalytical Kaiman Filter (EKF) [60]. The specific PCE 

application for this thesis is to verify the differential correction 

software for each NORAD GP theory. The following discussion 

presents a synopsis of the PCE procedure: 
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1. An OR81 file is produced, for the specific NORAO theory, 

using a set of 'truth' epoch orbital elements as input to 

the GTOS EPHEM program. At fixed time intervals the 

inertial rectangular components of the position and 

velocity are output to the OR81 file to represent "actual" 

observations. 

2. For the specified NORAO theory, the perturbed position and 

velocity histories are computed over the same time span 

as the ORB1 file in step one. This computation is based 

upon a set of apriori elements at epoch that are 

different from the 'truth' elements used in step 1. 

3. At each observation time, the observation residuals are 

obtained by subtracting the position and velocity -

computed with the NORAO theory, in step two, from the 

"actual" observations. The vector of observation 

residuals, 0 b, is used in the least squares equations for 

corrections to the mean elements at epoch as foliows: 

-1 

oä j (0) = (ATWA) ATWob 
(5.1 ) 
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where a j (0) = mean equinoctial elements at epoch 

W = a weighting matrix 

A = the partial derivative of the observations 

with respect to the element set at epoch, 

Le.: 

[ or(t)'~(t)] o a. (0) 
I (5.2) 

For this analysis, the evaluation of the A matrix assumes that the 

partial derivatives of the osculating elements at time, t, with 

respect to the mean elements also at time, t, are given by: 

(5.3) 

Therefore, the A matrix evaluated at the observation times is 

composed of sub-matrices of the form: 

(5.4 ) 

[oaj(t)] 
The term, 0 a j (0) , is just the state transition matrix for the 

NORAD theory at time t. 
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4. After all observations have been processed, the revised 

estimate of the mean equinoctial elements at epoch is 

obtained from the following equation: 

~j (0) = ä j (0) + 8 aj (0) (5.5) 

All of the elements are assumed to be mean and ä j (0) represents the 

apriori estimate of the mean equinoctial elements at epoch. The 

element set ~j (0) is the new estimate and it replaces the 8. j (0) 

employed in step two. 

5. Steps two through four are repeated until adesignated 

convergence criterion is met. 

At the end of the PCE procedure, the specified NORAO GP theory 

will have been least squares fit to the reference ephemeris in the 

designated fit span. Given this best fit, the converged set of epoch 

mean elements is obtained and used as input to the GTOS EPHEM 

program to generate another OR81 file corresponding to the "best 

fit" GP trajectory. 80th the reference and "best fit" OR81 files are 

then analyzed with the GTOS COMPARE program [56]. 

The real data analysis employs a deterministic approach that 

uses the actual tracking data in the orbit determination process in 

order to evaluate the relative impact of a given NORAO GP theory on 

that process. The differences in the resulting orbit determination 

processes as described by the estimated state and other solve-for 
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parameters and the corresponding predicted ephemerides provide an 

indication of the effect on the process of the specific NORAD GP' 

theory [77]. The steps that will be employed in this real data 

analysis are as foliows: 

1. Generate a "truth" ephemeris by orbit determination 

processing of the best available actual observations 

using a very accurate DSST model. 

2. Process real observations with a given NORAD GP theory. 

3. Generate an ephemeris that is based on the converged 

Differential Correction solve-for parameters obtained 

in step two. 

4. Compare the NORAD GP ephemeris with the DSST "truth" 

ephemeris in the fit span. This comparison reveals the 

differences between the "truth" satellite theory (in this 

case the DSST) and the specified satellite theory. 

Throughout both the PCE and real data analyses, the 

dimensionless term, weighted RMS, will be used as a measure of fit 

quality. Within this thesis, weighted RMS will be defined as [54]: 

(5.6) 
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~ Yj 

.th 
residual Where =1 

O'j = standard deviation associated with 

the sensor and observations 

m = number of observations 

5.2 Low Altitude Case 

The simulated test case used in this low altitude PCE analysis 

demonstrates that the NORAD GP differential correction software 

functions as intended. Table 5-1 provides the characteristics of the 

specific orbit used in the simulated data analysis. 
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Table 5-1. Initial Parameters of the low altitude orbit for PCE. 

Element Value 

a 6789.00 km 

e 0.001 

i 65.0° 

n 357.99° 

0) 37.76° 

M 299.5° 

Perigee Height 404.076 km 

Apogee Height 417.654 km 

Area 2.00 m2 

Mass 200.0 kg 

Epoch 1979 4 November 12 hours 
o minutes 
0.000 seconds 
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The real data low altitude analysis uses nine days of NORAD 

tracking data (30 August 77 - 7 September 77). This data 

represents a portion of the tracking history for NSSC 10299 in the 

Historical Data System (HDS) catalog. NORAD provided Draper 

Laboratory with the observation data, a tracking network 

description, and a history of geomagnetic and solar activity for use 

in orbit determination studies [60]. It is important to note that 

neither the satellite initial conditions nor a satellite description 

were provided for this test case. However, Taylor's (1981) study 

established that NSSC 10299 is the Cosmos 947 satellite [60]. This 

fact is important because it establishes apriori estimates of the 

satellite's mass and area parameters wh ich are very important in 

the low altitude orbit determination process. 

This section is organized into two parts. The first part 

presents results from a comparison of the specified NORAD GP 

theory and the reference or "truth" file using the Precise Conversion 

of Elements procedure described in Section 5.1. These tests are run 

with data that simulates a static atmosphere. The second part of 

this section describes the real data comparison results from NSSC 

10299 which reflect an active atmosphere. The real data 

comparison statistics between the NORAD theories and a very 

accurate DSST during a three day fit span, reveal the sensitivity of 

the DC solutions to the differences between the specified NORAD GP 

theory and the DSST. 
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5.2.1 PCE Fits to a Specified NORAO Reference Ephemeris 

y 
i.~·f'~ 

K ~ ~;p 
~ /~ . 0-
J~ ~ 

The characteristics of the low altitude orbit used in this fr\J;r 
This oY'I'\V1: Precise Conversion of Elements (PCE) are detailed in Table 5-1. 

v4" 

A summary 01 ~"'~ I J 
the measurement standard deviations employed in the differential P' 
orbit is used in all the NORAO GP theory test cases. 

,)I" 

The relative weighting Ol .', f.,J. 

')~ 
correction process is presented in Table 5-2. 

between the position and velocity measurements is based on the 

'" ~"" I The "truth" data used in this ,.r 1. 
1f' 

propagation of errors in circular orbits. 

,"'" ~ \ PCE was produced with the GTOS EPHEM Program and the ~L 

The .h-)'~ ,'! ~ corresponding NORAO theory using the WGS-72 parameters. 
I l fCr. 

Oe .b(u,..,J 
compared to each NORAO GP theory "best fit" trajectory in a one day t--) (l~ 

fit span as described in section 5.1. Again, it is important to note ~V 

ephemeris of the reference run is stored as an ORB1 file and was 

that these comparisons were for ideal data in a stable atmosphere. 
./ 

Table 5-2. Differential Correetion Parameters Used in Low Altitude PCE 

Measurement Standard Deviation 

Measurement Theory Integration 
Type Sigma Value Sigma Units Coordinate System 

NORAD X 1500.0 Meters 
Theories Y 1500.0 Meters NORAD True 

Z 1500.0 Meters of Referenee 
XDOT 150.0 ern/sec 
YDOT 150.0 ern/sec 
ZDOT 150.0 ern/sec 
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5.2.1.1 SGP Low Altitude OC Comparison 

The SGP ephemeris comparison results during the one day fit 

span are summarized in Table 5-3. The only perturbed apriori 

element in the differential correction run was a two kilometer 

increase in the semimajor axis. The converged final position error 

RMS of 7.194 x 10-5 meters indicates that the SGP differential 

correction processing was very effective when measured against a 

SGP "truth" file. The actual compare plots reveal extremely small 

secular drifts in various parameters as would be expected without 

exact matching orbit files. 
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Table 5-3. SGP Low Altitude PCE Results 

Initial weighted RMS 

Final weighted RMS 

Initial Position Error RMS(m) 

Final Position Error RMS(m) 

Number of Iterations 

Converged? 

76.021 

2.513x10- 8 

185247.12 

7.194x10- 5 

5 

YES 

Residual Standard Deviation and (% Observations Aeeepted) 

x (m) 2.593x10-5 (100%) 

Y (m) 1 .113x1 0- 5 (100% ) 

z (m) 2.360x10-5 (100%) 

x (em/see) 4.079x10-6 (1000/0) 

Y (em/see) 1.758x10-6 (100%) 

z (em/see) 3.7115x10-6 (100%) 

5.2.1.2 GP4 Low Altitude OC Comparison 

The GP4 PCE results during the one day fit span are presented 

in Table 5-4. Four Keplerian elements were perturbed in this 

analysis and they are as foliows: semi-major axis (+2.0km), 

eeeentrieity (+.001), inelination (+.1 degrees) and longitude of 
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aseending node (-0.44 degrees). As in the SGP ease, the eonverged 

final position error RMS of 2.946x10- 5 meters indieates that the 

GP4 DC software is eorreetly funetioning with a GP4 "truth" file. 

The aetual COMPARE plots do not reveal any signifieant trends other 

than normal iteration patterns. 

Table 5-4. GP4 Low Altitude PCE Results 

Initial weighted RMS 81.051 

Final weighted RMS 1.209x10- 8 

Initial Position Error RMS(m) 197658.64 

Final Position Error RMS(m) 2.946x10- 5 

Number of Iterations 5 

Converged? YES 

Residual Standard Deviation and (% Observations Aeeepted) 

x (m) 2.07x10-5 (100%) 

Y (m) 8.97x10-6 (100%) 

z (m) 1 .89x 10-5 (100%) 

x (em/see) 2.35x10-6 (100%) 

Y (em/see) 9.96x10-7 (100°/0) 

z (em/see) 2.12x10-6 (100%) 
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5.2.1.3 HANOE Low Altitude O.C. Comparison. 

The HANOE PCE results during the one day fit span are 

summarized in Table 5-5. Four Keplerian elements were perturbed 

exactly as in the GP4 analysis. After five iterations, the converged 

final position error RMS was 2.952x10- 5 meters. Again, this 

performance is very similar to the SGP and GP4 results, and 

indicates that the HANOE OC processing is very effective with a 

HANOE "truth" file. Actual COMPARE plots are very similar to the 

SGP and GP4 results. 
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Table 5-5. HANDE Low Altitude PCE Results 

Initial weighted RMS 

Final weighted RMS 

Initial Position Error RMS(m) 

Final Position Error RMS(m) 

Number of Iterations 

Converged? 

81.118 

1.211x10-8 

197819.07 

2.952x10- 5 

5 

YES 

Residual Standard Deviation and (% Observations Aeeepted) 

x (m) 2.070x10-5 (100%) 

Y (m) 8.974x10-6 (1000/0) 

z (m) 1 .890x1 0-5 (100% ) 

X (em/see) 2.350x10-6 (100% ) 

Y (em/see) 9.962x10-7 (100% ) 

z (em/see) 2.122x10-6 (100%) 

5.2.2 Fits to Real Data (NSSC 10299) 

. As deseribed in seetion 5.2, this differential eorreetion test 

ease uses data whieh represents six days of traeking history of 

NSSC 10299. Table 5-6 deseribes the initial parameters that were 

used in this applieation. Throughout this analysis a DSST orbit 
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generator which incorporated a full force model was used to 

establish a reference ephemeris for the fit span comparisons. Table 

5-7 depicts the OSST force model used in this case. The reference 

ephemeris, obtained with a differential correction fit over days four 

through six, was generated by using apriori epoch mean elements 

that were obtained from a differential correction fit to real 

observations over the first three day period. After eight iterations 

the fit over days four through six converged to a weighted RMS of 

2.24. The results of the observation processing are presented in 

Figure 5-1. This OSST ephemeris was used as a reference to 

compare with a OSST prediction over days four and five. The initial 

conditions for this prediction were obtained from the OSST fit over 

the first three days. Additionally, both the GP4 and HANOE theories 

were used to fit the NSSC 10299 tracking data over both three day 

fit spans. The converged OSST reference ephemeris was compared to 

the GP4 and HANOE differential correction fits over days four 

through six. 
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Table 5-6. Initial Parameters of NSSC 10299 

Element Value 

a Kilometers 6635.805 

e 0.0098 

i Degrees 72.97 

Q Degrees 125.77 -
w Degrees 65.44 

M Degrees 103.14 

Perigee height (Km) 192.634 

Apogee height (Km) 322.696 

Epoch 30 August, 1977 Oh Om O.OOOs 
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Table 5-7. Force Model Used in the DSST 'Truth' Model 
for the Low Altitude Case (NSSC 10299) 

AOG Model 

Zonals: (8xO) GEM9 

Tesseral Resonance: None 

Second Order J 2 : On 

Lunar-Solar Point Mass: 

Moon: (a/r)4, e 2 

Sun: 

Solar Radiation Pressure: Off 

Drag: On 

CD = 2.0 

Satellite Mass: 5700 kg 

Satellite Area: 6.1 m2 
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SPG Model 

Zonals: (8xO), e 3 

M-Dai lies: (8x8), e 3 

Tesserals (8x8), e 2 

J2 + Drag/M-Daily Coupling 
(8x8), e 2 

Lunar-Solar-Point Mass: 
Analytical Model 

Solar Radiation Pressure: Off 

Drag Short Periodics: On 



DIFFERENTIAL CORRECTION SUMMARY PAGE 2 OF 2 PAGE 62 
-. --

OBSERVATION SUMMARV BY TYPE 

TYPE RANG AZ El RRAT 
TOTAL NO. 275 275 275 239 
NO. ACCEPTEO 238 ( 86%) 26S ( 96%) 265 ( 96%) 223 ( 93%) 
WEIGHTEO RMS 3 _ 112 1. 892 1.584 2.175 
MUN RESDUAL 464.1 -4.003 35.67 -160.4 
STANDARD OEV 1144. 178.6 138.5 778.9 

OBSERVATION SUMMARY BY STATION 

STATION PARO CBOF CBOF CBOF CBOF CBOF ASCO ASCO ASCQ ASCQ 
TYPE All All RANG Al El RRAT All RANG Al El 
TOTAL NO. 0 72 18 18 18 18 80 20 20 20 
NO. ACCEPTEO o ( 01" 67( 93%) 17 ( 94%) 18 (100%) 16 ( 88%) 16 ( 88%) 80 (100%) 20 (100%) 20 (100%) 20 (100%) 

WEIGHTEO RMS O.OOOOE+OO 2.883 3.656 2.222 3.086 2.351 2.024 2.780 2.738 0.8907 
STANDARD OEV O.ooooE+OO 0.0000[<00 69.24 176.8 172.1 467.0 O.ooooE+OO 209.5 259.8 82.81 

STATION ASCO EGlO EGlO EGlO EGlO NAVO NAVO NAVO NAVO ClEF 
TYPE RRAT All RANG Al El All RANG Al El All 
TOTAL NO. 20 45 15 15 15 63 21 21 21 0 
NO. ACCEPTEO 20 (100%) 42 ( 93%) 12 ( 80%) 15 (100%) 15 (100%) 44 ( 69%) 16 ( 76%) 13 ( 61%) 15 ( 71Y.) o ( 010 
WEIGHTEO RIIS 0.6118 1.833 2.909 1.133 1.164 1.800 0.2169 3.169 0.8673 0.0000[<00 
STANDARD OEV 718.5 O.ooooE+OO 163.5 70.95 55.86 O.ooooE+OO 416.8 203.9 106.1 O.ooooE+OO 

STATION ClET ClET CLET ClET CLET FYlO FYlO FYlO FVlO FYlO 
TYPE All RANG AZ El RRAT All RANG Al El RRH 

TOTAL NO. 428 107 107 107 107 36 9 9 9 9 
ND. ACCEPTEO 398 ( 92%) 80 ( 741" 106 ( 99%) 106 ( 99%) 106 ( 9910 35 ( 97%) 9 (100%' 9 (100%' 8 ( 88%' 9 (IOOY.' 
WEIGHTED RMS 2.011 3.854 0.8609 1.115 1.411 2.334 0.4959 2.421 3.141 2.512 
STANDARD OEV O.ooooE+OO 124.2 90.03 104.5 769.8 O.ooooE+OO 711. 3 348.5 155.2 500.3 

STATION FVlF FYlF fYlF FYlF FYlF FYl T FYLT FVLT FVLT FVlT 
TYPE All RANG Al El RRAT All RANG Al EL RRAT 
TOTAL NO. 20 5 5 5 5 72 18 18 18 18 
NO. ACCEPTEO 18 ( 90%) 4 ( 80%) 5 (100%) 5 (IOO%) 4 ( 80%) 59 ( 81%) 18 (100%' 17 ( 94%' 18 (IOOY.' 6 ( 33%' 
WEIGHTED RMS 2.174 1.756 1.953 2.331 2.575 2.501 1.497 2.724 1.290 5.365 
STANDARD OEV 0.0000[+00 4277. 193.0 162.5 246.6 O.ooooE+OO 1232. 250.9 134.4 107.7 

STATION OVBF OYBT THUF THUF THUF THUF THUF ANTO ANTO ANTO 
TYPE All All All RANG Al EL RRH All RANG Al 
TOTAL NO. 0 0 164 41 41 41 41 84 21 21 
NO. ACCEPTEO o ( 010 o ( O%) 164 (100%) 41 (100%) 41 (100%' 41 (IOOY.) 41 (IOOY.) 84 (100%' 21 (IOOY.' 21 (100%' 
WEIGHTEO RMS O.OOOOE+OO O.ooooE+OO 2.402 2.526 2.104 1.222 3.284 2.680 3.882 2.200 
STANDARD OEV O.ooooE+OO O.ooooE+OO O.ooooE+OO 904.4 187.9 201.1 408.5 O.ooooE+OO 104.4 44.71 

STATION ANTO ANTO 
TYPE El RRAT 
TOTAL NO. 21 21 
ND. ACCEPTEO 21 (100%) 21 (100%) 
WEI GHTED RMS 2.543 I. 531 
STANDARD OEV 54.21 152.2 

Figure 5-1. DSST Low Altitude Observation Processing Summary 
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5.2.2.1 Fit Span Camparisans 

This section presents a camparisan of the OSST results from 

the first and second differential correction fit spans. This section 

also provides the results of a camparisan between the converged 

OSST reference ephemeris and both the GP4 and HANOE OC fit 

ephemerides over days four and five. 

5.2.2.1.1 OSST Analysis 

A camparisan of the two three day fit spans in this particular 

analysis presents an interesting example of the effects of a dynamic 

atmosphere. The results of the first three day fit span are given in 

Table 5-8 which presents a 1230.9 meter RMS position error, over 

three days of tracking data. Table 5-9 depicts the second three day 

fit span results and indicates a 1554.0 meter RMS position error. 

There is also an increase in the weighted RMS from 1.39 to 2.24. 

These sig n ificant differences pro mpted a compariso n of the 

stability of the atmosphere during the second three day fit span 

relative to the first three days. A study of the solar and 

geomagnetic activity of days four through six revealed an increase 

in the average geomagnetic index from 4.3 to 6.7, and a simultaneaus 

increase in the average solar flux value from 82.86 to 83.73 [54]. 

The increase in both of these factars indicates a "hotter" or more 

dynamic atmosphere existed over days four through six. The 
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tracking data analysis suggests that unmodeled atmospheric 

variations can cause an increase in both position and weighted RMS. 

The significance of these increases is highlighted by the fact that 

this particular DSST model approaches the accuracy of a special 

perturbations model, and the differential correction process did not 

eliminate these RMS differences. This analysis suggests that 

further studies be undertaken to understand more clearly the impact 

of both geomagnetic and solar flux variations. It may be desirable to 

incorporate these effects into the orbit determination process in 

order to improve the accuracy. 
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Table 5-8. Results of DSST oe for NSSC 10299, Days 1-3 

Residual Standard Deviation 
..... _. 

Range 1051 meters 

Azimuth 11 3.1 seeonds of are 

Elevation 134.2 seeonds of are 

Range-Rate 378.0 em/see 

Position RMS error over 3 day fit span 
1230.9 meters 

Number of Iterations: 8 

Weighted RMS 1.39 (Ja = 14.76 em 

Table 5-9. Results of DSST oe for NSSC 10299, Days 4-6 

Residual Standard Deviation 

Range 1144 meters 

Azimuth 178.6 seeonds of are 

Elevation 138.5 seeonds of are 

Range-Rate 778.9 em/see 

position RMS error over 3 day fit span 
1554.0 meters 

Number of Iterations: 8 

Weighted RMS 2.24 (Ja = 34.68 em 
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5.2.2.1.2 GP4 Analysis 

The GP4 theory was used to fit the same tracking data as in 

the OSST reference fit. Figure 5-2 presents the observation 

summary for the GP4 fit. These results are comparable to the 

converged OSST results given in Figure 5-1 except that the GP4 

model did not accept as many range observations. It is also of 

interest to note that the GP4 range sigma of 1124 meters almost 

matches the OSST value of 1144 meters. Table 5-10 presents a 

summary of the results of the GP4 differential correction, which are 

very comparable to the OSST fit. However, a careful study of 

Figures 5-3 through 5-8, which display comparisons in position and 

me an longitude, reveals some significant findings about the _ 

sensitivity of the OC solution to the differences between the GP4 

and OSST theories. In particular, the along-track differences of 

days four and five, as seen in Figures 5-5 and 5-6, reveal a small 

cubic signature with a distinctive twelve hour periodicity 

superimposed. The same pattern is also present in Figures 5-7 and 

5-8, the mean longitude differences for days four and five. The 

twelve hour periodicity may be explained by the fact that the G P4 

and OSST theories are based on different treatments of the m-daily 

geopotential terms as explained in Chapter 2. These observations 

support the suggestion that the differential correction process does 

not remove the periodic characteristics of the GP4 orbit 

determination results in this particular low altitude test case. 

188 



DIFFERENTIAL CORRECTION SUHHARY PAGE 2 0' Z PA6E 61 

OBSERVATION SUHHARY BY TYPE 

TYPE AANS AZ EL RRAT 
TOTAL NO. 275 275 275 239 
NO. ACCEPTED 185 I ,T.", 259 I 94)(1 264 I 9610 222 I 9210 
HEIGHTEO RHS 2.556 2.172 1.670 2.207 
HEAN RESDUAL 544.9 30.45 43.28 -343.5 
STANDARD DEV 1124. 197.1 151.9 817.6 

OBSERVATION SUHHARY BY STATION 

STATION PARq CBDf eBDf CBDF CBDF CBOF ASCq ASCq ASCq ASCq 
TYPE ALL ALL RANS AZ EL RAAT ALL IWG AZ EL 
TOTAL NO. 0 7Z 1B 1B 18 18 80 20 20 20 
NO. ACCEPTED o I OlO 62 I 8"0 10 I ""I 18 nOOlO 16 I 88%1 18 nOOlO 76 I 95%1 16 I 8010 20 nOO%I 20 nOO%I 
HEIGHTED RHS O.OOOOE+OO Z.785 3.844 1.941 2.843 2.750 1.896 2.627 2.515 1.185 
STANDARD OEV O.OOOOE+OO O.OOOOE+OO 130.7 146.2 146.4 499.0 O.OOOOE+OO 157.6 244.3 140.4 

STATION ASCq EGLq EGUI EGLq EGLq NAyq NAyq NAyq NAyq CLEF 
TYPE RAAT ALL RANS AZ EL ALL RANS AZ EL ALL 
TOTAL NO. 20 45 15 15 15 63 21 Z1 21 0 
NO. ACCEPTED 20 1100%1 39 I 86%1 9 • 60%1 15 1100%1 15 1100%1 43 I 68%1 16 I 76%1 12 • ST.", 15 I 71%1 o I 0%1 
HEIGHTED RHS 0.6337 2.512 3.497 Z.745 1.239 1.477 0.2101 2.630 0.8228 O.OOOOE+OO 
STANDARD OEV 709.1 O.OOOOUOO 204.5 105.6 66.87 O.OOOOE+OO 409.0 174.1 98.72 O.OOOOEtOO 

STATION CLET CLET CLET CLET CLET FYLq FYLq FYLq FYLQ FYLQ 
TYPE ALL RANS AZ EL RAAT ALL UNS AZ EL RRAT 
TOTAL NO. 428 107. 107 107 107 36 9 9 9 9 
NO. ACCEPTED 369 I 8610 51 I 4T.", 106 I 99%1 106 I 99%1 106 • 99%1 35 • 9T.", 9 1100%1 9 1100%1 8 • 88%1 9 nOO%I 
HEIGHTED RHS 1.812 3.279 1.430 1.227 1.646 Z.428 0.6914 2.444 3.451 2.428 
STANDARD OEV 0.00001+00 101.1 144.9 101.5 925.7 O.OOOOE+OO 1005. 329.3 143.6 328.4 

STATION FYLF FYLF FYLF FYLF FYLF FYLT FYLT FYLT FYLT FYLT 
TYPE ALL IWG AZ EL RAAT ALL IWG Al EL RUT 
TOTAL NO. 20 5 5 5 5 72 18 18 18 18 
NO. ACCEPTEO 19. 95%1 4 • 80%1 5 1100%1 5 1100%1 5 110010 53 I 73%1 18 1100l:1 15 I 83%1 18 1100XI 2 • 11XI 
HEIGHTEO RHS 1.998 1.560 2.613 0.9018 Z.361 2.256 -'1.857 2.551 1.545 5.792 
STANDARO OEV O.OOOOE+OO 3475. 182.0 74.56 406.8 O.OOOOE+OO 1463. 230.9 85.46 77.15 

STATION OvaF OvaT THUF THUF nruF TIIU' TIIU' AHTIf AHTIf AMTQ 
TYPE ALL ALL ALL RANS AZ EL RRAT ALL IWG AZ 
TOTAL NO. 0 0 164 41 41 41 41 84 21 21 
NO. ACCEPTEO o I 0%1 o • OXI 164 1100XI 41 1100XI 41 1100l:1 41 1100%1 41 1100%1 70 • 83%1 11 I 5Zl:1 18 I 85% 1 
HEIGHTEO RHS O.OOOOE+OO O.OOOOE+OO 2.100 1.902 2.344 1.429 2.546 3.089 2.466 3.371 
STANDARD OEV O.OOOOE+OO O.OOOOE+OO O.OOOOUOO 815.9 201.6 220.3 505.6 O.OOOOE+OO 59.35 83.79 

·STATION ·AHTIf AHTIf 
TYPE EL RAAT 
TOTAL NO. n Z1 
NO. ACCEPTED 20 I '5%) 21 1100XI 
HEIGHTEO RHS 2.827 3.357 
STANDARD OEV 60.82 290.8 

Figure 5-2. GP4 Low Altitude Observation Processing Summary 
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Table,S-10. Results of the GP4 OC for NSSC 10299 Oays 4-6 

Residual Standard Deviation 

Range 1124 meters 

Azimuth 197.1 seeonds of are 

Elevation 151. 9 seeonds of are 

Range-Rate 817.6 ern/sec -
Position RMS error over 3 day fit span 

1551.1 meters 

Number of Iterations: 12 

Weighted RMS 2.13 O'a = 41.93 em 
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Figure 5-3. GP4-DSST Radial Differences Day 5 
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Figure 5-4. GP4-DSST Cross-Track Differences Day 5 
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Figure 5-5. GP4-DSST Along-Track Differences Day 4 
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Figure 5-6. GP4-DSST Along-Track Differences Day 5 
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Figure 5-7. GP4-DSST Mean Longitude Differences Day 4 
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Figure 5-8. GP4-DSST Mean Longitude Differences Day 5 
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--
5.2.2.1.3 HANDE Analysis 

As in the GP4 analysis, the HANDE theory was used to fit the 

tracking data over days four through six. The observation summary 

in Figure 5-9 is almost identical to the GP4 results with the 

exception that 3% less range observations and 1 % more range rate 

observations are accepted. Similarly, the results of Table 5-11 are 

very comparable to the GP4 results of Table 5-10. Also, in this low 

altitude, high drag analysis, Figures 5-10 through 5-15 are nearly 

identical to the GP4 results of Figures 5-3 through 5-8. The 

combination of these observations, in conjunction with the 

similarity between the GP4 and DSST results, indicates that all 

three theories provide similar sensitivities to the DC solution 

process as seen by the similar values of total position RMS, 

weighted RMS and range sigmas. Since all three theories provide 

very similar results, this tends to indicate that none of the theories 

correctly account for atmospheric variations in the DC solution 

process. This conclusion is based upon a comparison of the results 

of the original three day DSST differential correction fit (Table 5-

8), with the corresponding values in each theory over days four 

through six. 

197 



DIFFERENT'IAL CORIIECnDN SlHtARY PAGE Z OF 2 PAge U 

CllSERVAnDN SIHWIY BY TYPE 

TYP! RANQ AZ EL RRAT 
TOTAL ND. 275 275 275 23' 
ND. ACCEPTED 176 • 64XI 261 • MY. I 265 • 96X) 223 • ,V,) 
HEIGHTED RttS 2.598 2.127 1.699 2.227 
HEAN RESDUAL 569.0 22.43 55.69 -327.4 
STANDARD DEY 1152. 200.8 151.1 810.6 

CllSERYATIDN SUHHARY BY STAnDN 

STAnDN PA" CODF CBDF CBOF CDD' CBOF Ascq Ascq ASCQ ascq 
TYPE ALL ALL RAND AZ EL RUT ALL RAND Al EL 
TOTAL ND. 0 72 18 18 18 18 80 20 20 20 
ND. ACCEPTED o • OXI 61 ( B4Y,) 9 • !iOY.) 18 1100X) 16 • 88Y.) 18 1100X) 76 ( 95:0 16 • 80;(1 20 1100;(1 20 1100701 
HEIGHTEO RttS O.OOOOE+OO 2.772 4.036 1.861 2.997 2.540 2.094 3.680 2.112 1.051 
STANDARD DEY O.OOooE+OO O.OOOOE+OO 126.4 132.1 151.6 ...... 4 0.00001+00 243.9 208.2 124.3 

STAnDN Ascq EGLq EGLq EGLq EGLq NAyq NAVQ NAyq NAyq CLE' 
TYPE RRAr ALL RAND AZ EL ALL RAND Al EL ALL 
TOTAL ND. 20 45 15 15 15, n Z1 21 21 0 
ND. ACCEPTED 20 1100xl 39 • 8670) 9 • 6070) 15 110OX) 15 110070) 43 • 68)0 16 • 7670) 12 • 577.) 15 • 717.) o • O;() 
HEIGHTEO RttS 0.5232 2.393 3.552 2.395 1.258 1.397 0.2315 2.500 0.7317 O.OOOOE+OO 
STANDARD DEV 601.0 O.OoooE+OO 231.3 85.'14 65.37 O.OooOE+OO 453.6 164.2 89.07 O.OOOOE+OO 

STAnDN CLET ClET CLET CLET CLET FYlq FYLq FYLq FYLq FYLq 
TYPE ALL RANQ Al EL RUT ALL RAND Al EL RUT 
TOTAL ND. 428 107 107 107 107 36 9 , 9 , 
ND. ACCEPTED 362 • Wol '14 ( 417.1 106 ( 99X) 106 • "Xl 106 ( 99XI 35 • 9770) 91100)0 9 (10070) 8 ( 88Y.l 9 110070) 
HEIGHTED RttS 1.700 2.876 1.404 1.324 1.645 2.437 0.6938 2.493 3.%68 2.627 
STANDARD DEV O.OOOOE+OO 83.58 140.0 100.7 935.1 O.OOOOE+OO 1013. 334.2 1'14.3 345.0 

STAnDN FYL' FYLF FYLF FYLF FYLF FYLT FYLT FYLT FYLT FYLT 
TYPE ALL RAND Al EL RUT ALL RAte Al EL RUT 
TOTAL ND. 20 5 5 5 5 7t 18 18 18 18 
ND. ACCEPTEO 19 • 9!iY.l 4 ( 8OY.) 5 110OX) 5 110OX) 5110070) 56 ( 7T/,) 18 l100Y.l 17 • 9470 , 18 l1oo;() 3 • 1670' 
HEIGHTEO RttS 2.002 1.557 2.641 0.9770 2.316 2.667 1.910 3.355 1.386 5.967 
STANDARD DEY O.OOOOE+OO 3466. 171.3 79.08 372 •• O. OOOOE +00 1!i04. 281.9 80.73 66.33 

sunDN OY8' DYBT THUF THU' THUF 11IUF THUF ANTQ ANTq ANTQ 
TYPE ALL ALL ALL RAND AZ EL RRAT ALL RAND AZ 
TOTAL ND. 0 0 164 41 41 41 41 84 21 21 
ND. ACCEPTED o • OX) o • 0:0 164 110er/" 41 1100x) 41 110OX) 41 110OX, 41 110OX' 70 I 8V" 10 • 47X' 18 • 8!iY.) 
HEIGHTEO RttS O.OOOOE+OO O.OOOOE+OO 2.074 1.872 2.305 1.465 2.497 3.155 3.508 2.977 
STANDARD DEY O.OOOOE+oo O.OOOOE+OO O.OooOE+OO 822.1 196.3 Z19.6 493.6 O.ooOOE+oo 94.41 68.7Z 

-sranDN A~ ANTQ 
TYPE EL RUT 
TOTAL ND. Z1 Z1 
ND. ACCEPTEO 21 11007.) 21 110070) 
HEIGHTED RtIS 2.834 3.420 
STANDARD DEV 60.35 281.0 

Figure5-9. HANDE Low Altitude Observation Processing Summary 
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Table 5-11. Results of HANOE OC tor NSSC 10299 Oays 4-6 

Residual Standard Deviation 

Range 1152 meters 

Azimuth 200.8 seeonds of are 

Elevation 1 51 • 1 seeonds of are 

Range-Rate 810.6 ern/sec 

Distanee RMS error over 3 day fit span 
1565.585 meters 

Nurnber of Iterations: 12 

Weighted RMS 2.14 O"a = 42.106 
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Figure 5-10. HANDE-DSST Radial Differences Day 5 
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Figure 5-11. HANDE-DSST Cross-Track Differences Day 5 
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5.3 Geosynchronous Case 

The importance of geosynchronous orbit analysis is weil 

established for both civilian and military communications satellites 

and their applications. Today, the number of satellites within the 

geosynchronous ring is increasing to the point where it is useful to 

better understand the details of the NORAO geosynchronous orbit 

determination process. 80th the simulated data Precise Conversion 

of Elements analysis and the real data case will provide insight into 

the orbit determination performance of NORAO's OP4 theory and a 

"Modified OP4" theory. 

The real data analysis will utilize actual tracking data for the 

Canadian ANIK 02 satellite. The ANIK 02 is a twenty-four channel -

communications satellite in the 6/4 GHz band [79]. This satellite 

was designed to replace original ANIKs in the same band wh ich are 

used for voice and data transmission [80]. The ANIK 02 was launched 

from the Orbiter Oiscovery during Mission 51 A on 9 November 1984, 

and after geosynchronous transfer, it assumed a position at 111.5 

degrees West longitude. The ANIK 02 was then put into an orbital 

storage status until 1 January 1986 when it came into full service 

[79]. The tracking data utilized in this analysis represents the 02 

tracking history during the storage time frame. The specific data 

used for this case was taken from a maneuver-free period and 

therefore this data creates an optimum test environment for a 

geosynchronous analysis. An added feature of this analysis is that 

tracking data fram two independent sources, TELESAT (Canada) and 
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the NORAO Historical Oata System, were merged to form a 

comprehensive data base. 

As in the low altitude case, this section first presents the 

results of the PCE analysis for the OP4 theory. In general, this 

theory is shown to neglect some lunar-solar and resonance effects, 

as is expected due to the mathematical explanation presented in 

chapter two. The real data results carry significant impact because 

of the optimum test case environment provided by the ANIK 02 

tracking data, including 134 precision observations over a twenty­

six day are. 

5.3.1 PCE Fit to the OP4 Propagation Trajectory 

This PCE analysis used an ephemeris based on a OP4 trajectory 

produced by the GTOS EPHEM program as the "truth" model or 

reference trajectory. The force model used in this model is the OP4 

force model using WGS-72 parameters. This "truth" model was 

compared with a OC "Best Fit" ephemerides. over a thirty day fit 

span. The characteristics of the geosynchronous orbit used as 

initial conditions in this analysis are presented in Table 5-12. 
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Table 5-12. Initial Parameters of Geosynchronous Orbit for PCE 

Element Value 
"';"-

a 42,164.09 km 

e 0.001 

i 1.50° 

Q 166.00° 

w 144.99° 

M 25.4129° 

Perigee height 35,828.12 km 

Apogee height 35,743.8 km 

Diameter 1 .67365 meters 

Mass 200.0 Kg 

Epoch 1988 6 Oct 6 hrs 43 min 51.670 sec 
Input Coordinate System 
NORAD True of Date - Earth Equator 
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------

5.3.1.1 OP4 Geosynchronous OC Comparison 

The OP4 ephemeris comparison results during a thirty day fit 

span are summarized in Table 5-13. Three Keplerian elements were 

perturbed as folIows: semimajor axis (+2km), inclination (+0.5 

degrees), and longitude of ascending mode (+0.5 degrees). The 

converged final position error was 1.325x10-5 meters after six 

iterations. These results indicate that the OP4 OC processing is 

very effective when compared to a OP4 "truth" file. As in the low 

altitude PCE results, the actual COMPARE plots reveal extremely 

small secular drifts in various parameters as is expected. 
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Table 5-13 DP4 Geosynehronous PCE Results 

Initial weighted RMS 

Final weighted RMS 

Initial Position Error RMS(rn) 

Final Position Error RMS(rn) 

Nurnber of Iterations 

Converged? 

86.842 

3.616x10- 9 

318226.64 

1 .325x1 0- 5 

6 

YES 

Residual Standard Deviation and (% Observations Aeeepted) 

x (rn) 9.498x10- 6 

y (rn) 8.728x10- 6 

z (rn) 

x (ern/sec) 

y (ern/sec) 

z (ern/sec) 
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2.931 x1 0- 6 

6.378x10- 8 

6.917x10- 8 

2.152x10- 8 
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5.3.2 Fits to TELESAT ANIK 02 Tracking Oata 

This analysis is the first step of a larger, more comprehensive 

study. This comprehensive analysis will study the fundamental 

characteristics of the general perturbation orbit determination and 

prediction error budgets with an overall goal to improve the 

operational OP4 theory. The main focus of this study will be to 

understand how the truncations and approximations associated with 

aperturbation theory, in general, and with the OP4 theory in 

particular, impact the orbit determination process for high altitude 

orbits. The plan for this study begins with OSST orbit determination 

runs with various truncations of the mean element equations of 

motion and the short-periodic models. Initially, the OSST model 

will be truncated to closely approximate the OP4 General 

Perturbation model. The OSST theory will then incorporate various 

modifications to the satellite theory. This analysis will also 

evaluate the impact on computer run time as modifications are 

incorporated. The resulting performance data will provide useful 

guidance for the future enhancement of OP4, or any other NORAO GP 

theories used for deep space. 

The role of the geosynchronous analysis presented in this 

thesis is to provide some initial estimate of the relative errors due 

to the OP4 algorithm. In order to provide this estimate, Oraper 

Laboratory's Semi-Analytical Satellite theory was used to fit the 

merged NORAO and TELESAT tracking data. Table 5-14 provides a 

summary of the force model used for this analysis. The observation 
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weights used in the differential correction process were taken from 

references [82] and [83]. Epoch mean elements were taken from the 

converged best OSST fit, and used to generate a "truth" ephemeris 

with which to compare the OP4 theory. The approximate 

characteristics of the ANIK 02 Reference orbit are given in Table 5-

15. The OP4 comparison ephemeris will be generated with epoch 

mean elements taken from the OP4 theory's best fit to the same data 

fit by the OSST model. For this particular case, the procedure will 

isolate the effects of the satellite theory differences. An additional 

test will utilize the "Modified OP4" theory, in the same manner as 

the OP4 theory. The "Modified OP4" theory is the net result of an 

analysis by Or. Paul Cefola, Wayne McClain (CSOL) and Bruce Baxter 

(The Aerospace Corporation) [81]. The original OP4 theory was 

modified to correct an error which truncated the lunar solar 

contribution to the secular rates whenever the inclination was less 

than three degrees. Specifically, the ascending node rate, due to 

lunar solar perturbations was set to zero for all orbits with less 

than three degree inclination. 
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Table 5-14. Force Model Used in the DSST 'Truth' Model 
for the Geosynchronous (ANIK D2) Case 

AOG Model SPG Model 

Zonals: (8xO) GEML2 Zonals: (4xO) 

Tesseral Resonance: (8x8) M-Dailies: (4x4), e 2 

Second Order J2 effect: On Tesserals: (2x2) 

Lunar-Solar Point Mass: J 2 + Drag/M-Daily Coupling: Off 

Lunar-Solar-Point Mass: On 

Solar Radiation Pressure: On 

Solar Radiation Pressure: On J2 2 Second Order: Off 

Drag: Off Drag Short Periodics: Off 

Table 5-15. Initial Parameters of ANIK D2 Reference Orbit 

Element Value 

a 42,166.215 Km 

e 0.0002198 

i 1 .77° 

Q 277.00° 

w 71.51° 

M 288.164° 

Perigee height 35,778.80 km 

Apogee height 35,797.34 km 

Satellite Area 12 m2 

Satellite Mass 640.5 kg 

Epoch 1985, April 5, 12 hrs 59 min 28.623 sec 
Input Coordinate System 
Mean of 1950.0 Earth Equator 
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5.3.2.1 DSST Analysis 

It is necessary to explain in detail how the DSST "truth" 

ephemeris was established in order to provide a valid foundation for 

comparison to the DP4 ephemeris. First of all, the DSST force model 

employed (Table 5-14) is essentially equivalent to a special 

perturbations model. This model requires more computer run time, 

but it is extremely accurate. The real data in this analysis was fit 

over twenty-six days. Figure 5-16 is a summary of the observation 

processing during the twenty-six day time span. It is significant to 

note that 121 of 134 range observations were accepted, as was 97% 

of all azimuth, elevation and right ascension observations and 100% 

of the declinations. A three sigma editing feature was part of the 

observation processing design. As previously mentioned, the 

observation data includes both NORAD tracking data from the 

Historical Data System and TELESAT tracking data. The final 

residual statistics are presented in Table 5-16 which shows a 1.94 

weighted RMS over the twenty-six day fit span. Overall, the DSST 

fit provides an excellent basis from wh ich to generate a "truth" 

ephemeris. 
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Figure 5-16. DSST Geosynchronous Observation 

Processing Summary 
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Table 5-16. Results of DSST DC for Merged Telesat Data 

Residual Standard Deviation 

Range 7.018 meters 

Azimuth 57.42 seeonds of are 

Elevation 66.28 seeonds of are 

Range-Rate 27.52 ern/sec 

Weighted RMS error over 26 day fit span 
1.94 

Number of Iterations: 10 
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5.3.2.2 OP4 Analysis 

The OP4 model was used to fit the same data as in the OSST 

case. The observation processing summary is presented in Figure 5-

17. In general, this summary suggests that the processing provided 

a good basis for the differential correction since the data is over a 

long are, with good quality observations. However, it is important 

to note that only 9% of the range data was accepted, 13 of 134 

observations. This indicates that for this particular case, the OP4 

model had problems with the precision range data being outside of 

the three sigma tolerance. Obviously, the OP4 range standard 

deviation was much greater than the OSST range standard deviation. 

The results of Table 5-17 support this observation as the OP4 range 

standard deviation was 14.73 meters, which is approximately twice 

the 7.018 meter standard deviation for the OSST range residual 

(Table 5-16). The twenty-six day fit span results of Table 5-18 

show a position difference of 6.66 kilometers RMS for the converged 

OP4 ephemeris when compared to the converged OSST reference 

ephemeris. Although the magnitude of the position error is 

significant, it is perhaps more important to study Figures 5-18 

through 5-22 which present comparisons in position, longitude of 

the ascending node and mean longitude. Specifically, Figure 5-20, 

the along track differences, Figure 5-21, the longitude of the 

ascending node histories, and Figure 5-22, the mean longitude 

differences, present indications of a periodic or· cubic signature that 

could indicate mismodeling of resonance or lunar-solar 
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perturbations. The significance of this analysis is that even with an 

exeellent data base, from two independent sourees whieh use a long 

are of aetual traeking observations, the differential eorreetion 

proeess does not eompensate for negleeted effeets. Further analysis 

is neeessary to investigate this finding whieh eompares a OSST fit 

to the OP4 fit. 
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Figure 5-17. OP4 Geosynehronous Observation 

Proeessing Summary 
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Table 5-17. Results of DP4 DC for Merged Telesat Data 

Residual Standard Deviation 

/ 
Range 14.73 meters ---~ 
Azimuth 59.63 seconds of arc 

Elevation 72.70 seconds of arc 

Range-Rate 0% accepted 

Weighted RMS error over 26 day fit span 
2.391 

Number of Iterations: 19 

Table 5-18. Comparison of DP4 Theory with Converged DSST 

26 Day Fit Span 

Position RMS Velocity RMS 
(km) (cm/sec) 

Radial 1 .071 36.59 

Cross-Track 3.176 23.96 

Along-Track 5.757 10.09 

Total 6.666 44.89 
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Figure 5-20. DP4-DSST Fit Span Along-Track Differences 
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Figure 5-22. DP4-DSST Fit Span Mean Longitude Differences 
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The "Modified DP4" model also processed the same merged 

observations with results that were very similar to the DP4 

processing. See Figure 5-23. The only significant difference in the 

fit span results, as depicted in Tables 5-19 and 5-20 is a decrease 

in the cross-track RMS values from 3.176 kilometers to 0.681 

kilometers. Figures 5-24 through 5-28 support this analysis. 

Specifically, a comparison of Figure 5-27 and 5-21 graphically 

illustrates the noticeable improvement in the longitude of - the 

ascending node histories from approximately 0.1 degrees in DP4 to 

0.05 degrees in the "Modified DP4" model. All of the remaining 

"Modified DP4" figures remain essentially the same as the original 

DP4 results. 
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DIFfERENTIAL CORRECTION SUHHARV PAGE 2 OF .2 PAGE 44 

OBSERVATION SUHHARV BV TYPE 

TYPE RANB AZ EL RA DEC RRAT 
TOTAL NO. 134 134 134 40 40 10 
NO. ACCEPTED l31 9X) 130 I 97X) 131 I 97X) 39 I 9T/.) 40 1100XI o I OXI 
HEIGHTED RIIS 3.335 2.265 2.493 2.532 1.848 O.OOOOE+OO 
MEAN RESDUAL 2.400 -4.333 0.5063 14.06 7.127 O.OOOOE+OO 
ST ANDARD DEV 16.36 60.87 70.68 45.40 32.88 O.OOOOE+OO 

OBSERVATION SUHHARV BV STATION 

STATION EGlQ PRKQ ALTQ MILet HILQ HILQ HILQ MILQ TTAF TTAF 
TYPE ALL All ALL ALL RANG AZ EL RRAT ALL RANG 
TOTAL NO. 0 0 0 40 10 10 10 10 372 124 
NO. ACCEPTED o I OiO o I 0%) o I OX) 17 I 42XI 1 I 10XI 6 I 60XI 10 1100XI o I OX) 257 I 69%1 lZl 9%1 
HEIGHTED RHS O. OOOOE+OO O.OOOOE+OO O.OOOOE+OO 3.995 1.719 6.053 2.203 O.OOOOE+OO 2.295 3.435 
STANDARD DEV O. OOOOE +00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 10.32 31.93 O.OOOOE+OO O.OOOOE+OO 16.93 -
STATION TTAF TTAF HAGe IllGe IllGe IIIGC HeGe KAGe KBGe KCGC 
TYPE AZ EL ALL ALL RA DEC ALL ALL ALL ALL 
TOTAL NO. 124 124 0 32 16 16 0 0 0 0 
NO. ACCEPTED 124 1100X) 121 I 9T/.) o I OXI 32 1100X) 16 1100XI 16 1100XI o I 0%1 o I 0%1 o I 0%1 o I 0%1 
HEIGHTED RHS 1.898 2.516 O.OOOOE+OO 1. 708 1.556 1.847 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 
STANDARD DEV 59.56 72.95 O.OOOOE+OO O.OOOOE+OO 22.79 17.49 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 

STATION CAGe CBGe CCGe CCGe CCGe STl1C STl1C STl1C 
TYPE ALL ALL ALL RA DEC ALL RA DEC 
TOTAL NO. 0 0 24 12 12 24 12 12 
NO. ACCEPTED o I 0%1 o I 0%1 23 I 95:'.1 UI 91%1 12 1100%1 24 1100XI 12 1100XI 12 1100%1 
HEIGHTED RHS O.OOOOE+OO O.OOOOE+OO 3.567 4.378 2.610 0.1854 0.2061 0.1620 
STANDARD DEV O. OOOOE +00 O.OOODE+OO O.OOOOE+OO 71.47 19.84 O.OOOOE+OO 27.95 21.57 

Figure 5-23. "Modified" DP4 Geosynchronous 

Observation Processing Summary 
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Table 5-19. Results of "Modified" DP4 oe for Merged Telesat Data 

Residual Standard Deviation 

Range 16.36 meters 

Azimuth 60.87 seeonds of are 

Elevation 70.68 seeonds of are 

Range-Rate 0% aeeepted 

Weighted RMS error over 26 day fit span 
2.387 

Number of Iterations: 19 
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Table 5-20. Cornparison of "Modified" DP4 Theory with Converged DSST (D2) 

26 Day Fit Span 

Position RMS Velocity RMS 
(km) (crn/sec) 

Radial 1.027 39.39 

Cross-Track 0.681 16.57 

Along-Track 6.073 9.851 

Total 6.197 43.86 
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Figure 5-24. "Modified DP4" -DSST Fit Span Radial Differences 
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Figure 5-25. "Modified DP4" -DSST Fit Span Cross-Track Differences 
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Figure 5-26. "Modified DP4" -DSST Fit Span Along-Track Differences 
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Figure 5-27. "Modified OP4" and OSST Fit Span Longitude of 

Ascending Node Histories 
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Figure 5-28. "Modified DP4" -DSST Fit Span Mean Longitude 

Differences 
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Chapter 6 

CONCLUSIONS I FUTURE WORK 

6.1 Summary 

The primary objective of this thesis was to accurately 

incorporate the SGP, GP4/DP4 and HANDE general perturbation 

theories into the Draper Laboratory modified Goddard Trajectory 

Determination System orbit computation program. The Ford 

Aerospace & Communications Corporation supplied the SPADOC 

Fortran source code and test cases which made this implementation 

possible. The real tracking data used to demonstrate NORAD GP 

theory orbit determination using the Draper Laboratory orbit 

computation program consisted of the following: 

1. NORAD tracking data for the low altitude NSSC 10299 for 

the period 30 August 77 - 7 September 77. 

2. TELESAT tracking data for the ANIK 02 communication 

satellite for the period 1 January 85 - 31 December 85. 

3. Tracking data from the NORAD Historical Data System for 

the ANIK 02 satellite covering the period 1 January 1985 

to 31 December 1985. 
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Chapter Two provides a review of all the NORAD GP theories 

wh ich were apart of this incorporation. This chapter also presents 

an overview of the Draper Laboratory's Goddard Trajectory 

Determination System and its capabilities. This review is 

significant because it presents the "new" tools wh ich are now 

available to analyze the NORAD GP theories. Additionally, Chapter 

Two explains the differences between the coordinate systems most 

commonly used by NORAD and GTDS. 

Chapter Three describes the implementation effort in a manner 

that matches the actual data flow. A key aspect of the incorporation 

was the ability to maintain an independent functionality between 

the NORAD software and the existing GTDS architecture. This 

feature also minimized required modifications to both the NORAD 

and GTDS software. Nonetheless, thirty-two GTDS subroutines and 

four SPADOC subroutines were modified and eleven new GTDS 

subroutines were created to complete the interface. 

Chapter Four presents the results of testing the newly 

incorporated NORAD orbit generators. An SGP test case generated 

with mixed-mode arithmetic was taken from Spacetrack Report #3 

[5] and the results of this case were regenerated to an accuracy of 

3.32 meters. The Ford Aerospace Corporation supplied orbit 

generator test cases wh ich served as benchmarks for the GP4/DP4 

and HANDE theories. These test cases were regenerated to an 

accuracy of 10.34 millimeters for GP4/DP4 and to 15.34 

centimeters for the HANDE theory. An analysis of the elements of 

the state transition matrix for each NORAD theory indicated that the 
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NORAO orbit generator partial derivatives were accurately 

incorporated. 

Chapter Five discusses the differential correction results for 

aPreeise Conversion of Elements analysis and for areal data test 

protoeol for both the low altitude and geosynehronous flight 

regimes. The Preeise Conversion of Elements analysis used a 

referenee ephemeris that was based on a speeifie GP theory 

ephemeris. The same NORAO GP theory starting with a perturbed a 

priori element set was then fit to this referenee. Eaeh theory 

eonverged to a OC solution after five iterations thereby verifying 

the implementation and funetionality of the OC software. 

In the real data analyses, a high preeision OSST model is fit to 

the traeking data in order to obtain mean elements whieh are 

subsequently used to generate a truth ephemeris. Then, a given 

NORAO GP theory was used to proeess the same traeking data 

through a differential eorreetion proeess to obtain an epoeh mean 

element set. This eonverged element set was used to generate a 

NORAO GP ephemeris. This GP ephemeris was then eompared to the 

OSST referenee orbit in the GP fit span. These low altitude and 

geosynehronous results are summarized in Tables 6-1 and 6-2 

respeetively. 
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Table 6-1. Summary of Real Data Low Altitude Results 

GP4 HANDE DSST DSST 
Days (4-6) Days (4-6) Days (1-3 ) Days (4-6) 

DC Results 
Position Error RMS 
(meters) Over 3 Day 1551.1 1565.6 1230.9 1554.0 
Fit Span 

--. Table 6-2. Summary of Real Data Geosynehronous Results 

"Modified" 
DP4 DP4 DSST 

DC Results 
Weighted RMS Error 2.39 2.39 1.94 
Over 26 Day Fit Span 

Comparison Results with 
Converged DSST 
Over 26 Day Fit Span 

Position RMS (km) 6.67 6.20 N/A 

Velocity RMS (ern/sec) 44.89 43.86 N/A 
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6.2 Conclusions 

The NORAD General Perturbation theories have been accurately 

incorporated into the Draper Laboratory's Goddard Trajectory 

Determination System orbit computation program. The results of 

chapter Four provide strong confidence in the accuracy of this 

incorporation. As a result of this incorporation, Draper Laboratory 

has the capability to further analyze the NORAD GP theories. This 

capability is unique in that the NORAD GP theories can now be 

analyzed with the tools within Draper Laboratory's GTDS computer 

program as described in chapter Two. Similarly, Draper Laboratory 

can investigate error budgets for any specific satellite trajectory, 

using any of the incorporated NORAD GP theories. The design of this 

incorporation maintains the SPADOC software as an independent 

block interface which allows corrections and improvements to be 

easily communicated between Draper Laboratory and the 

government's SPADOC environment. 

The analysis of the state transition matrix elements for each 

NORAD GP theory indicates that the differences wh ich exist between 

the values of the partial derivatives are primarily due to the 

different definitions of each theory's "mean" elements. Further 

analysis of these differences would be valuable in understanding the 

partial derivatives and their particular contributions to the orbit 

determination process. 
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The results of the low altitude PCE analyses indicate that all 

NORAO GP differential correction processing was very effective 

when compared with each corresponding theory's "truth" file. 

However it is significant to note that the differential 

correction process (based on the real observations) did not correct 

for the effects of neglecting a dynamic atmosphere with either the 

NORAO models nor even with the highly accurate OSST model. This 

observation suggests a need for satellite theories to better account 

for geomagnetic and solar flux variations within their density 

models. Further study of the impact of these effects is essential to 

improving orbit determination accuracy. 

The low altitude case results revealed that the differences 

between the GP and OSST OC solutions contained m-daily periodic 

effects. This was to be expected based on the different assumptions 

used to build the GP and OSST satellite theories as described in 

Chapter two. 

The results of the geosynchronous analysis carry significant 

impact due to the outstanding data provided by TELESAT [83] and the 

NORAO HOS; also, the ANIK 02 satellite was in a maneuver-free 

'storage' mode during this analysis period. The real data results, for 

the case considered in this analysis, suggest that the OP4 theory 

does not incorporate some lunar-solar effects and resonance 

effects, as seen in the along-track and mean longitude differences, 

and longitude of ascending node differences. This observation also 

was valid for the "Modified OP4" theory results; however, the cross­

track error was improved. 
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6.3 Future Work 

This thesis has created a new and unique analysis capability at 

the Draper Laboratory. Accordingly, there is a tremendous 

opportunity for further studies. The tools for these further studies 

lie within the Draper Laboratory modified Goddard Trajectory 

Determination System computer program. Any of the newly 

incorporated NORAD GP theories may now be modified or improved in 

a research environment without impacting operational capabilities. 

Again, it cannot be over emphasized that this research effort would 

not have been possible without the cooperation and assistance of the 

AF Space Command Directorate of Operational Analysis (DOA), the AF 

Electronic System Division (ESD) and the Ford Aerospace & 

Communications Corporation (FACC). Future research efforts, and 

the impact of those efforts will be determined, in a large part by the 

continued cooperation of these agencies. The following research 

suggestions present only a partial list of ideas that may have an 

impact in the future enhancement of NORAD's GP orbit determination 

capabilities. These suggestions are presented in three general 

categories; Draper Laboratory implementation and verification, 

NORAD GP theory performance and NORAD GP theory enhancements. 
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Th e fo Ilowi ng activities are suggestio ns fo r fu rthe r 

implementation and verification at Oraper Laboratory: 

1. As noted in chapter Four, it would be desirable to employ 

the SPAOOC standalone test drivers (SGPORV, GP40RV, 

HANORV) for the GP theories modified to write GTOS­

format ORB1 files. These ORB1 files could then be 

systematically compared with ORB1 files produced by 

the NORAO GP theories operating in GTOS. The error time 

histories and statistics would give further verification 

of the GTOS implementation. 

2. The performance of the HANOE time derivative initialization 

only has been investigated implicitly through its 

operation in the OC process. The capability to access the 

GTOS Harris-Priester atmosphere density model in a ~ 
HANOE initialization run to allow the resulting mean 

element histories to be compared with those produced by 

the OSST should be developed. In this context, it would 

be desirable to implement the option for mean element 

output with the GTOS NORAO GP theories. 

3. Investigate the GP state transition matrix and the drag 

solve-for partials using a double-sided finite 

differencing technique. 
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4. Incorporate and analyze the NORAO Semianalytical Satellite 

Theory (SAL T) in the Oraper Laboratory GTOS computer 

program. 

5. Oevelop the capability for the NORAO theories to access the 

GTOS physical models: geopotential coefficients, timing 

polynomials, density models, and solar 

activity/geomagnetic index data files. Oevelop the 

A~. 5 capability for the GTOS orbit generators (OSST and 

~ } Cowell) to access the SPADOC atmospheric density 

l models. 

The performance of the NORAO GP theories could be analyzed 

with the following activities: 

'*' 1. Modify the PCE test methodology to solve for epoch mean 

elements based on the fit of each NORAO GP theory to the 

ephemeris of a high precision Cowell integration. Exploit 

this idea further by comparing the NORAO and Cowell 

ephemerides over both fit and predict spans. Run 

extensive tests to get trends within each theory, against 

the Cowell integrator in both fit and predict spans. 

2. Modify the real data analysis approach by comparing the 

NORAO GP ephemeris with a variety of different "truth" 

242 



models in a given predict span. Possible truth models 

include the following: 

a. Use the same OSST "truth" model as was used in the fit span 

analysis in Chapter Five. 

b. Create two "truth" models by sorting a given observation 

data set to form two independent batches. Then fit OSST 

to each of these batches to obtain an initial element set 

to propagate two "truth" ephemerides. 

(~~- Filter/smooth either the OSST or Cowell model to get 
~ r 
J-t L another reference trajectory. 
(U,w ,{y \;'-'f.~ J.., 1l-AVr .. Ll_U .. ",",~ 

.. O'l~ J'.- u,(.. ~ r -_ .. 
iJ.Y" .' ).P 

~..(,l, 3. Utilize an orbit determination approach to measure the OSST 

accuracy by comparing specified solutions over numerous 

overlapping time periods. Such an approach was 

employed by the Computer Sciences Corporation for an 

orbit determination study of the HEAO-2 Spacecraft. In 

that study, orbit solution accuracies were estimated by 

calculating ephemeris position differences in the four to 

six hour overlap intervals. 

This approach assumes that if two orbit solutions are 

accurate then the overlap differences will be small" but 

that the converse is not true. Furthermore, if several 

consecutive overlap differences show a significant (fifty 

percent or more) reduction when a more precise set of 

orbit determination parameters is selected, then it is 
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reasonable to conclude that the error in the orbit 

solutions has been decreased. The HEAO-2 study also 

stated that the conclusion should also be partially based 

on the behavior of the RMS weighted residuals of the 

solutions [98]. 

Another approach that could be used to measure the 

accuracy of the DSST model is the technique that Lichten 

and Bertiger [99] use in a GPS orbit determination study. 

The key concept of their approach is to compare orbits 

that were determined independently without any common 

measurements and compare the RMS differences over a 

time interval during which no data were used for either 

of the two solutions . 

. i 4. Run extensive timing analysis for efficiency comparisons of 

DSST vs. any given GP theory. 

5. Develop a systematic understanding of how the orbit 

determination process is impacted by varying levels of 

geomagnetic disturbance at various altitudes and mean 

solar activity levels. Develop a capability for including 

these effects in a given satellite theory, such as HANDE 

or DSST. 
( .~ ~,~ JVw' ~~~;;,t .. ~-"." 

'U}{\;',.Jt.-\ ) 
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6. As described in chapter Five, study the NORAD DP4 theory 

by modifying the DSST geopotential model to match the 

DP4 model and then determine the impact of adding 

specific terms with regard to accuracy and computer run 

time. This analysis would have the overall goal of 

improving the operational capabilities of the DP4 general 

perturbation theory. 

7. Analyze the GP performance in non-traditional flight 

regimes. High eccentricity orbits with periods of 24 

hours or longer such as the EXOSAT are of interest. 

8. Investigate the accurate conversion of element sets 

between Cowell, DSST, SGP, GP4/DP4, and HANDE. 

The following two suggestions are activities that could 

directly enhance specified NORAD GP theories: 

-) 1. Incorporate m-daily effects into the GP4, HANDE, or SAL T 

theories by using some of the recursive models from 

DSST. 

2. Consider the development of an 'operational style' GP theory 

with fast computation speed based on non-singular, 

canonical elements, such as the Poincare second set. 

This development should include a formulation of the 
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state transition matrix. This satellite theory would 

allow the same variables to be used as the oe solve 

parameters and the satellite theory initial conditions. 

Low e and low i would not be special cases in this theory. 

Recursive models should be considered for this satellite 

theory. The transmission of elements to users should 

also be considered. 
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Appendix A 

Overview of General and Special Perturbation Methods 

This appendix provides an overview of perturbations, the 

methods which are employed to solve the perturbation problem, as 

weil as the advantages and disadvantages of these methods. 

Following abrief introduction to perturbations, this appendix will 

discuss both general and special perturbatio<n methods. This 

development includes the basic theory of each method, and the 

advantages and disadvantages for each given method. The motion of 

a satellite about a planet cannot be solved accurately with the two­

body Keplerian theory. Although this theory is an integral part of 

any trajectory, the actual path will vary from this theoretical 

reference orbit due to the presence of other masses; solar radiation 

effects; the asphericity of the central planet, or other attracting 

masses; and atmospheric drag. These factors cause the satellite to 

deviate from a classical two-body orbit, and are known as 

perturbations. From a mathematical viewpoint, these perturbations 

fall into two general categories: secular - terms that grow 

monotonically with time, such as the precession of the vernal 

equinox which moves westward approximately fifty arc-seconds per 

year; [84] or periodic - any terms that are cyclic, such as the Earth's 

nutation wh ich is caused by the moon creatirig a torque on the 

Earth's equatorial bulge [85]. A further distinction is often made 

between short and long periodic terms based upon a given boundary 
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frequency. Classically there are two types of perturbation methods: 

general and special. This review will begin with a look at general 

perturbation methods. 

General Perturbation Methods 

General perturbations (GP), include methods of generalizing 

the expressions for simple two-body motion, such as a planet about 

the sun, to include the disturbing effects of other planets by 

utilizing infinite trigonometrie se ries expansions and term-by-term 

analytic integration. The resulting expressions are known as general 

perturbations [86]. The analysis of general perturbations has played 

a significant and key role in celestial mechanics. As early as 1665, 

Sir Issac Newton, at the age of twenty-three, conceived the law of 

gravitation, the laws of motion, and the fundamental concepts of the 

differential calculus. But, due to a flaw in his general perturbation 

th eory 1, Newton tossed his papers aside, and the world would not 

learn of any of his discoveries until twenty years later [85]. In all 

fairness, Newton had explained most of the variations in the moon's 

orbit, except the motion of perigee. In 1749, Alexis-Claude Clairant 

found that the second order perturbation terms removed 

discrepancies between the observed and theoretical values, which 

apparently, had not been treated by Newton. Ironically, about 100 

years later, the full explanation was found in an unpublished 

1 Newton only had a sm all discrepancy in his explanation of the moon's motion. 
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manuscript of Newton's. Nonetheless, Clairant was the first person 

to accurately predict the return of Hailey's Comet in 1759, based 

upon calculations of the perturbations due to Jupiter and Saturn. He 

correctly predicted a possible error of one month due to mass 

uncertainty and other more distant planets. In 1845, the presence of 

the planet Neptune was deduced analytically by John Couch Adams 

and Urbain-Jean-Joseph LeVerrier, from the analysis of the 

perturbed motion of Uranus. Furthermore, the shape of the Earth 

was deduced by an analyisis of long period perturbation terms in the 

eccentricity of the Earth's orbit [85]. These early developments 

were motivated by adesire to explain the motion of planets or 

heavenly bodies. A different era of motivation was launched on 

October 4th, 1957 - SPUTNIK! This single event was the beginning of 

a . very serious analysis of artificial satellite motion about the earth. 

General perturbation theory played a fundamental role in this early 

development. Within two years, Dirk Brouwer, of the Yale University 

Observatory, working under a contract with the Air Force Cambridge 

Research Center, provided a solution to the trajectory of an 

artificial satellite without drag [42]. This initial solution is the 

foundation of present day general perturbation theories, including 

some of those used by NORAD. 

Brouwer's Theory 

Brouwer gives the solution for a spheroidal Earth with the 

gravitational potential limited to the principal term through the 
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fifth harmonic. The method is summarized as foliows. Brouwer 

begins with the equations of motion of a small mass attracted by a 

spheroid: 

(A.1 ) 

With the potential, 

Il Ilk 2 ( . 2 ) U = T + -3- 1 - 3 sm ß + ... 
r 

(A.2) 

The equatorial plane is taken as the x-y plane; ß is the latitude; r is 
2 

the geocentric radial distance to the satellite, Il = km; 

where m is the mass of the spheroid, and k = G, which is the 

Gaussian Constant, or the universal gravitational constant. 

Specifically, 

- 8 cm2 

G = 6.670 x 10 dyne ~ 
gm 

(A.3) 

Now, let i be the inclination of the orbital plane; 0), the argument of 

pericenter, and f, the true anomaly. See Figure A-1. 
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Figure A-1. Orbiting Mass in a Right-Handed Coordinate Frame 

Then, by the law of sines for spherical triangles: 

sin ß" = sin i sin (co + f) (A.4) 

and 2 sin2 ß = sin 2 i (1 - cos (200 + 2f» (A.5) 

Therefore, the disturbing function can be written in terms of orbital 

elements as: 

u = Ilk 2 [(_1 + ~ COS 2 i )a3 + (~ _ ~ COS 2 i )a3 cOS(2oo + 2f)] (A.6) 
~ 2 2 ~ 2 2 ~ 
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Where a and e are the osculating semimajor axis and 

eccentricity respectively [42]. k 2 which Brouwer The term 
2 

introduced in 1946, is equivalent to J 2 ~ , with R defined as the 

equatorial radius of the earth [42]. From this point, Brouwer derives 

his solution using canonical transformations, wh ich is a method 

developed by H. Von Zeipel in 1916. (It is of interest to note that J. 

A. Morrison states that the Von Zeipel procedure is a particular case 

of the generalized method of averaging, corresponding to an 

appropriate choice of the arbitrary functions arising in the averaged 

equations [87].) These transformations are used to actually simplify 

the system into one of fewer unknowns. To gain some appreciation 

for this procedure, the following development will present abrief 

description of the canonical transformations. 

First, Brouwer uses a new set of variables, the Delaunay 

variables, which are defined as folIows: 

1 

L = (~a) 
2" 

= mean anomaly (A.7) 

1 

G = L (1- e2) 2" 9 = argument of pericenter (A.8) 

H = G cos I h = longitude of ascending node (A.9) 

With these variables, the equations of motion become: 
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Where 

dL aF dl aF 
dt = a1' dt = - aL 

dG aF aF 
dt = ag , 

dg 
dt = - aG 

(A.10) 

(A.11 ) 

(A.12) 

(A.13) 

This function F is also known as a Hamiltonian [42], which is defined 

as: 

Where 

H-(q, p, t) = L PkCl k - L (q, CI, t) 
k 

q = generalized coordinates 

P = generalized momenta 

CI = generalized velocities 

and, the function L is the Lagrangian [88], 

L = (kinetic energy) - (potential energy) = 
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(A.15) 

Next, Brouwer transfarms his Hamiltonian, F, which is a 

function of the original Delauney variables, through successive 

canonical transformations, with the aid of appropriate generating 

functions, into new Hamiltonians, F*, and finally, F**. This final 

Hamiltonian is a function of only three variables, and it is separated 

into secular and periodic parts. The secular motions are obtained to 

order k~ and the periodic terms are developed to order k 2 At this , 

point, Brouwer solves the equations of motion, and then transfarms 

the variables back into Keplerian elements [42]. This completes the 

overview of Brouwer's general perturbation theory. 

An alternative form of the geopotential was derived by Dr. 

John Vinti in which he used the definition of k 2 as defined by , 

Brouwer, to obtain the following expression [42] : 

(A.16) 

This is the standard form of the geopotential which is the accepted 

form in use today. 

General Perturbation Methods Continued 

Also, by October of 1959, Yoshida Kozai, of the Smithsonian 

Astrophysical Observarory and Harvard College· Observatory, derived 

-

the perturbations of the Keplerian elements of a close Earth --
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satellite without drag as functions of mean orbital elements and 

time [38]. In June of 1961, Brouwer and Gen-Ichiro Hori published, 

"Theoretical Evaluation of Atmospheric Drag Effects in the Motion of 

an Artificial Satellite. " This theory was the first general 

perturbation theory to include the effects of atmospheric drag. It 

represents the atmosphere with an exponential density model, and 

neglects atmospheric rotation. It is interesting to note that 

although this model may seem quite simple, the resulting equations 

alone fill thirty pages in the Astronomical Journal [89]. The efforts 

of Brouwer and Kozai form the foundation the operational NO RAD 

general perturbation theories. 

Present day effo rts in the theo retical development of 

analytical satellite theory are led by A. Deprit at the National 

Bureau of Standards. 

Advantages and Disadvatages of General Perturbations 

Since general perturbation models are solved analytically, you 

get exact answers. The result will apply to a general class of cases, 

and will reveal much information about the perturbed orbit. This is 

especially true for long duration calculations [85]. The most 

significant advantage of GP satellite theories is their ability to map 

position and velocity of an object from some initial time directly to 

a user-specified output time without costly step-by-step numerical 

integration [8]. 
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Although these are significant advantages, there is a price to 

pay. The two major drawbacks are a loss of accuracy and flexibility. 

In order to solve the equations of motion analytically, many of these 

theories suffer from severely restricted perturbation models. 

Several are limited to lower degree zonal harmonics. Also, the 

third-body perurbation, when included, is usually restricted to the 

cases of very close earth satellites. Furthermore, in so me models, 

there are problems for low eccentricity, low inclination or at 

critical inclination [48]. These anomalies are revealed by examining 

Brouwer's generating function for his second canonical 

transformation, and Kozai's differential equation representing the 

variation of eccentricity. For Brouwer, the expressions are [42]: 

S· -1-

, ( L'2 L'4 J [1 ( H2 J 5 H4 
( H2 J- 1 . 'J G "I, G" - cf' 16 1- 11 cf' - 2 cf' 1- 5 cf' sm 2g' (A.17) 

2 
H 2. 

Where - = COS I => <3,2 (1 _ 5 cos2 i) (A. 1 8) 
1 

This yields the critical inclination, i (in degrees), singularity at: 

1- 5 cos2 i = 0; (A.19) 

when = 63 0 
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For Kozai[38], de 1 - e2 a R .J1 - e2 a R 
dt = na2e aM - na2 e a 00 

Where e = 0, creates a singularity2. 

(A.20) 

In general, the current style of a first order GP theory can 

comprise tens of thousands of terms which require a prohibitive 

storage capacity. The only way to reduce the storage requirements 

is to restrict the theory itself. Additionally, whenever new terms 

or models are introduced, the GP theory software must accomodate 

these changes [48]. This is a very serious concern, for example, in 

atmospheric density models, where significantnew work has been 

appearing each year since 1962. These new models are complex and 

do not necessarily follow existing algorithms or established 

software routines. Furthermore, the treatment of more complex 

gravitational fields and atmospheric density models with improved 

analytic expressions will result in a tremendous increase in 

algorithmic complexity. 

subject to [8]: 

The use of such algorithms would be 

increased analysis and software costs, 

reduced program speed and increased memory usage, 

difficulties in verifying program correctness, 

and program inflexibility. 

2 A singularity will exist only if a Rand a R are not proportional to some power of 
aM aoo 

the eccentricity. 
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It should be noted that some authors have tried to use a recursion 

concept with the GP theories. The use of recursions creates 

flexibility and reduces computer storage requirements. 

Special Perturbation Methods 

Special perturbations (SP) are techniques wh ich deal with the 

direct numerical integration of the equations of motion including all 

necessary perturbing acceleratons [85]. In 1748, Euler developed the 

method of variation of parameters which at the time, was really a 

gerneral perturbation theory. However, as soon as direct numerical 

integration was used to solve the equations of motion, it became a 

special perturbation. The essence of variation of parameters is to 

find how the selected set of parameters vary with time due to the 

pertu rbations. The classical orbital element set variations are 

summarized in the Lagrange Planetary Equations which give the 

following orbital element derivatives [86]: 

(da de .QL dQ dro dA) 
dt ' dt ' dt ' dt ' dt ' dt (A.21 ) 

where A=-n't 

n = mean motion 

't = Time of pericenter passage 
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The most straight forward and simplest of all special 

perturbation methods is known as Cowell's method. It is a direct 

numerical integration of the equations of motion in rectangular 

coordinates. Phillip H. Cowell developed the method in the early 

20th century and he used it to determine the orbit of the eighth 

satellite of Jupiter. The application of Cowell's method is simply to 

write the equations of motion of the object being studied, including 

all the perturbations, and then to integrate them step-by-step 

numerically. Classically, Cowell's method has been applied in a 

Cartesian coordinate system, but improvements have been made by 

formulating the problem in polar and spherical coordinates [86]. 

Another SP theory, known as the method of Encke, is more 

complex than that of Cowell. It was actually proposed by William 

and George Bond in 1849, however; it became known as the work of 

Johann Franz Encke in 1851. In the Cowell method, the sum of all 

accelerations was integrated together. In Encke's method, the 

difference between the primary acceleration and all the perturbing 

accelerations is integrated. Therefore, all calculations and states 

are with respect to a reference, osculating orbit. This osculating 

orbit is the trajectory that would result if all perturbing 

accelerations could be removed at a particular time. One can 

integrate as long as the reference orbit and the true orbit do not 

deviate excessively. If so, a process of rectification, or realigning 

the reference and actual orbits, must occur to continue the 

integration [85]. 
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Today these methods are in use with various numerical 

integration methods, including the Adams-Bashforth Multi-Method 

(GTDS) and the eighth order Gauss-Jackson or sum squared method 

(NORAD). 
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Advantages and Disadvantages of Special Perturbations 

In general, special perturbations are very accurate, provided 

that the appropriate integration method is applied to the orbit of 

concern. Additionally, Cowell's method is simple in formulation and 

implementation, allowing any number of perturbations to be handled 

at the same time [85]. In Encke's method the determination of 

position and velocity in the osculating orbit is subject only to 

roundoff errors and is independent of the particular numerical 

technique used to perform the integration. The integrated quantities 

themselves are smalI, and when added to the osculating quantities, 

will have little effect on the determination of the true orbit. Before 

the errors in the deviations can grow in size sufficient to have a 

detrimental effect, a new osculating orbit is selected through 

rectification [86]. Due to the increased accuracy of special 

perturbations, NORAD uses the SP method for tracking objects of 

high interest when needed [17]. 

Nonetheless, there are also problems with special perturbation 

methods. First, they are computationally inefficient. For example, 

in order to get reasonably accurate data for a geosynchronous 

satellite orbit, with Cowell equations of motion, requires 

integration step sizes of less than 600 seconds in a high-order 

predictor-corrector integrator [59]. In other words, this requires a 

hundred or more steps per satellite orbit to give accurate results. 

Second, they are good for only one specific set of initial conditions, 

and therefore cannot be used to analyze a class of cases. Lastly, in 

261 

-------



most cases, roundoff or truncation errors will be present to some 

degree. Roundoff errors result from the fact that a computer can 

carry only a finite number of digits of any given number. Therefore, 

the occurence of this roundoff many times in the integration process 

can result in significant errors [85]. Brouwer and Clemence [90] give 

a formula for the probable roundoff error after n steps as 

log C 1124 n~) in number of decimal places. As an example, for 300 

integration steps, the probable error in decimal points would be 

2.76. Now, if six places of accuracy are required, then nine places 

must be carried in the calculations. The point here is that the fewer 

integration steps taken, the smaller the accumulated roundoff error. 

The best inhibitor of the significant accumulation of roundoff error 

is the use of double precision arithmetic. Truncation error is a 

result of an inexact solution of the differential equations. 

Basically, this error results from not using all of the series 

expansion terms employed in the integration method. The larger the 

step size, the larger the truncation error, so the ideal here is to 

have small step sizes. This is in exact opposition to minimizing 

roundoff errors. Thus, errors are unavoidable in numerical 

integration, and the objective is to use a method that minimizes the 

sum of roundoff and truncation error. Roundoff error is a function of 

the machine and truncation error is a function of the integration 

method [85]. 
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Appendix B 

Subroutine G2MEOE Mathematics 

This appendix presents the equations of each NORAD GP theory that 

correspond to the 6 x 6 GTDS state transition matrix. These partial 

derivatives are elements of the first six rows and columns of the 6 x 

7 AG2STM array within subroutine G2MEOE as depicted in Figure 3-

06. These are the partial derivatives of the current mean equinoctial 

elements with respect to the epoch mean equinoctial elements, 

a a. (t) 
I 

a a. (0) 
I • (3.16) 

The equations presented in this appendix were derived from the 

SP ADOe Fortran source code. As stated in chapter Three, the SP ADOe 

equinoctial elements correspond to the GTDS equinoctial elements in 

the following manner: 

(al' ag , X, <p, n, L) -7 (k, h, p, q, a, A) (B.l) 

However; in this appendix the terms, a f and a g will simply be 

denoted as fand g. The given equations are written in SPADOe 

equinoctial elements along with Keplerian elements and their 

derivatives, just as they are presented within the Fortran code. 
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These equations can be written In terms of Draper Laboratory's 

equinoctial element set by replacing the SP ADOC equinoctial 

elements by the appropriate terms as given in equation (B.l). It was 

necessary to decode this subroutine to obtain the actual equations in 

use for a given theory because the available sourees, [17] and [39], 

left some questions as to what the actual partial derivative equations 

were. Additionally, there was no source document available to 

provide the HANDE partial derivatives [50]. 

This appendix is divided into four major sections. The first 

section presents the equations which are common to all NO RAD GP 

theories and includes twenty-nine partial derivatives. The 

remaining sections present equations which are unique to each 

NO RAD theory by type. Throughout the appendix the following _ 

format is used to present the equations: 

( a ä j (t) J 
aa. (0) 

I 

= (a ä j (t) J = 
a a j (0) 

(Draper equinoctial elements) (SPADOC equinoctial elements) 

AG2STM (i,j) 
(i,j = 1,6) 

= RHS Equation 

Within the array AG2STM the order of the subscripts (rows and 

columns) is as follows: 

subscript 1 

subscript 2 

(f (t) , 9 (t) , X (t) , \jf (t) , n (t) , [ (t) ) 
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Additionally, any partial that is taken with respect to no IS 

multiplied by no • The partial derivatives which are common to all 

three GP theories inc1ude the following: 

(B.4) 

a k = ~ = AG2STM (1 6) = 0 a Ao a Lo ' (B.5) 
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a h - ~ = AC?2STM (2, 4 ) = 
aqo - a",o 

(cos n o) (sin i 0) (1 + cos i 0) (B.7) 

[5 (n.) + ~ J 2 n O j] f (t) (t -to) 
2 [ao (1- e!) 

a h - n ~ = AC?2STM (2, 5) = no-an - °a n 
o 0 

; (no + 00 0) f (t) (t - t 0) (B.8) 

a h - ~ = AG2STM (2, 6) = 0 
a 11. 0 - a Lo (B.9) 

~ = a x = AC?2STM (3, 1) = ak o af o 

f (4 n o ] (cos n(t)sin i (t))[(1+CO: i (t))] (t -to) (B.lO) 
o (1 - e!) 

a p _ ~ = AC?2STM (3, 2) = 
aho - ago 

90 (14_ ~!) J<cos 0(1) sin i (I)) [(1 + co: i (I ))] (I - 1 0) (B.II) 

ap _~ = AG2STM(3, 3) = 
apo - a x 0 [ 3J n ] 

cas (no (I - 10») - [(Sin 0,) (sin i 0) (1 + cas i,) - 2[ao (1
2
_ :~)j . 

(cos n(t) sin i (t)) [(1 + co~ i (t))] (t - t 0)] (B.l2) 
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_. 

a P _ ~ = AG2STM (3, 4) = 
a q 0 - a 'I' 0 [ 3J n ] 

sin (no (t - t 0» - [ (ces Qo)(sin i,) (1 + cos i 0) - 2[ao (1 ~ :~)J . 
(cos n(t) sin i (t)) [(1 +co~ i (t)) J (t -t o)J (B.I3) 

n ~ = n i.!.. = AG2STM (3, 5) = 
°an o °an o 

e ~o) (ces Q(t) sin i (t» [(1 + co: i (t» ] (t - t 0) )(Bo14) 

a P _ ~ = AG2STM (3, 6) = 0 
a "'0 - a Lo (B.I5) 

a q _ a 'I' = AG2STM (4, 1) = 
ak o -af o 

- f 0 (14_ ~b) (sin QCt) sin i (t» [(1 +Co! i (t» ] (t - t 0») 

(B.I6) 

~ = a '" = AG2STM (4, 2) = a h o a 90 

- 90 (14_ ~~») (sin Q(t) sin i (t» [(1 + co! i (t» ] (t - t 0) ) 

(B .17) 

a q _ a 'I' = AG2STM (4 , 3) = 
apo - a Xo 

-sin (no(t -ta)) 
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[ 3J 2
n 

0 ]J 
([(Sin Qo) (sin i 0)] (1 + cos i 0) - 2[a

o 
(1- e~)f . (B.18) 

(Sin n(t) Sin I (t)) (1 + ces i (t)) .. [ 1 ] (t - t 0») 

+ 

(B .19) 

a q _ n ~ = AG2STM (4, 5) = 
no a no - 0 a no 

-(7 ~o (Sin n(t) Sin I (t)) (1 + ces i (t)) . ) " [ 1 ] (t - t 0») 
(B.20) 

a q _ a \jf = AGeSTM (4 , 6) = 0 - - aLo a Ao (B.21) 

QJ:L -~ = AGeSTM (5,1 ) = 0 
(B.22) a k 0 af o 

QJ:L -~ = AGeSTM (5, 2) = 0 
(B.23) a ho a 90 

~ = ~ = AG2STM(5, 3) = 0 
(B.24) apo a Xo 

~ =~ = AGeSTM (5, 4) = 0 
(B.25) aqo a \jf 0 
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n ~ = n ~ = AG2STM(5,5) = no °an °an o 0 (B.26) 

..2JL = ~ = AG2STM (5,6) = 0 a 11. 0 a lo (B.27) 

aA. al -a - = -a - = AG2STM (6, 4) = (t - t 0)· 
qo ~o (B.29) 

(COSQoSin io(1+cosio) [b.,(3J(1-e~) +5)+ 3J2n, 2]J 
2[a o (1- e~)J 

a 11. = all = AG2STM (6, 6) = 1. 0 a 11. 0 a 0 (B.30) 

Equation (B .30) is the last equation which lS common to all the 

NORAD GP theories. The equations which are unique to the SGP 

theory are as follows 1 : 

Throughout the remaining equations 1to = Qo + Wo. 
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(B.32) 

(B.33) 

.-

d A -..2.1.. = AG2STM (6,1) = 
d k o - d f 0 

[ (3 (feo + feJ)] (t _ t 0) 
f 0 (1 - e~) (B.35) 

270 



(B.37) 

The equations which are unique to the GP4/DP4 theory are as 

follows 2: 

a k =.1..L = AGeSTM (1, 1) = AGeSTM ( 1,1 ) a k o a f 0 

+ 
SGP (B.38) 

3 

(PAR3)0 (~o) (t-t o) 9(t)90[(COS Qo)90 - (sin Qo)f o] 

~ = ~ = AGeSTM (1,2) = AG2STM (1,2)1 + a ho a 90 
SGP (B.39) 

3 

(PAR3)0 (~o) (t -t 0) 9 (t)f 0 [(sin Qo) f 0 - (cos Qo) 90] 

a h = af
9 = AGeSTM (2 ,1) = AGeSTM (2,1) a k o a 0 

SGP (B.40) 
3 

(PAR3)0 (~o) (t -t 0) f (t)90 [(cos Qo) 90 - (sin Qo) f 0] 

aha 9 - = - = AGeSTM (2 ,2) = AG2STM (2, 2) a ho a 90 
SGP (B.4I) 

3 

(PAR3)0 (~o) (t-t o) f(t)to[(sin Qo)f o - (COSQo)90] 

2 The P AR3 term is a drag term which is unique to the GP4/DP4. 
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-
a A. = ~ = AG2STM (6 ,1) = 
ak o af o 

[ f 0 ( 3 ( 11: 0 + Mo - n 0) + 11: 0)] (t _ t ) 
(1 - e~) 0 (B.42)3 

(B.43) 

aA. aL n - = n - = AG2STM (6,5) = 
°an °an o 0 

( 7 .' ) 3" (1t o + Mo - no) + no (t - t 0) (B.44) 

The equations which are unique to the RANDE theory are as folIows: 

~ = -.ll.. = AG2STM (1, 1 ) = AG2STM (1, 1) I + ak o af o 
SGF! 

[(sin 00 0) (ces 00) - (ces 00 0) (sin 00)] . [sin (oo(t) + O(t))] . 

(t-t o) [(eo) + (t-to){(~o) + (t-t o) (~)}] (~J (BA5) 

3 Throughout the remaining equations the term Mo is equivalent to the 
following: 

-
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~ =.lL = AG2STM (1, 2 ) = AG2STM (1, 2) I -o h o 0 go 
SGP 

[(ces wo) (ces Qo) - (sin wo) (sin Qo)] . [sin (w(t) + Q(t))] . 

(I -( 0 ) [«'lo) + (I -Io){ (~o) + (I -( 0 ) (~ )}] UJ (BA6) 

~ = ~ = AG2STM (2, 1 ) = AG2STM ( 2, 1 ) 
ok o of o 

SGP 

[(sin wo) (ces Qo) - (ces wo) (sin Qo)] ces (w(t) + Q(t)) . 

(I -( 0 ) [(90 ) + (I -Io){ (~o) + (I -( 0 ) (~ )}] UJ (BA7) 

~ = ~ = AG2STM (2, 2 ) = AG2STM ( 2, 2 ) o ho 0 go 
+ 

SGP 

[(ces wo) (ces Qo) - (sin wo) (sin Qo)] ces (co(t) + Q(t)) . 

(I -( 0 ) [(90 ) + (I -Io){ (~o) + (I -( 0 ) (~ )}] (~J (BA8) 

~ = ~ = AG2STM (6, 1) = o ko 0 f 0 

f [ (3 (11; 0 + Mo) + 11; 0)] (t _ t ) 
o (1 _ e!) 0 (B.49) 

(B.50) 

n ~ = n ~ = AG2STM (6, 5) = 
0 0 n 0 0 n 

o 0 

273 



(B.51) 

It is interesting to note that the following three partial 
OA. OA. OA. 

derivatives, 0 k 0' 0 ho ' and no 0 n o 
which correspond to the 

AG2STM (6,1),(6,2) and (6,5) members, are all functions of the first 

time derivative of the mean longitude Lo , and this term is defined 

differently for SGP, SGP4 and RANDE. Rence, for these three theories, 

these partial derivatives will yield different results. 
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Appendix C 

A COMP ARISON OF OTDS AND SP ADOC 

PARTIAL DERIVATIVE EQUATIONS 

This appendix is a discussion of a mathematical comparison of 

the equations which calculate the partial derivatives of current mean 

equinoctial elements with respect to the mean equinoctial elements 

at epoch for both the OTDS and the SP ADOC computer code. These 

partials are denoted as follows: 

where 

a a j (t) 

a a j (0) 

a j = (a, h,k, p,q, A) 

(3.16) 

The OTDS partial derivatives include the secular variations due to J 2 

only with no truncation of the orbital eccentricity. These partials are 

stored in the 6 x 6 OTDS 8 2 matrix. The equations which are 

dicussed in this appendix are taken from Shaver (See [74], Tables 3.9 

through 3.14). The SPADOC equations were taken from the SOP 

theory equations as shown in Appendix B. A comparison of these 

equations shows that the partial derivative equations, which are 

derived from the SOP theory computer code, after being modified as 
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described in Section 3.3.7.2, are equivalent1 to the equations which 

generate the GTOS 8 2 matrix. The comparison indicated that the 

members of the first six rows and columns of Figure 3-6 are 

equivalent to the members of Figure 3-8, the GTOS 8 2 matrix with 

the exception listed in the footnote. This observation is supported 

by and explained within the analysis in Sections 4.4.2 - 4.4.4. This 

mathematical comparison did not address the partials that are taken 

with respect to the drag parameter nor did the analysis consider the 

NORAO SAL T theory. SPAOOC partial derivatives were modified, in 

the same manner as in section 3.3.7.2, to obtain the form of the 

GTOS partial derivatives. These modifications will include using 

one or more of the following factors: 

1 . (C.1 ) 

where 

1 The only exception to this equivalence is that the SGP theory defines the mean 
longitude derivative at epoch as folIows: 

wheras GTDS defines the same term as folIows: 

This difference affects only the following partial derivatives: 

~ ~and~ 
ak ' ~h ' ~ o 0 0 0 a o • 
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2. 

3. 

aa 
a a. 

I 

where 

= (aa)1..!J... an aa. 
I 

(~~) = -(~ ~) 

Divide by no where appropriate. 

(C.2) 

Following the necessary modifications, it can be shown that the 

SP ADOC SGP theory equations and GTDS equations for the 8 2 matrix 

elements are equivalent. The following relations were useful in this 

analysis: 

where 

Also, glven that 

(1 - C) = ces i 
1 + C 

(2 5 . 2 . . ) - '2 sm I 0 - ces I 0 = 11: 0 

(C.3) 

(CA) 

r = 1 e for this implementation. 

x - ( 1 ) 
- (1 - e~) Il = n~ a! , , (C.5 a,b,c) 

(C.6) 
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Then it follows that 

= _ K a - ~ x2 [( 1 - C)] = n 
(52 0 (1 + C) 0 (C.7) 

( sin i ) ( sin 0) 
The equinoctial element p = (1 + cos i) = X (C.8) 

( 2 ) = (1 + cos i ) 
1 + C (C.9) 

The equinoctial element q = 
( sin i) ( cos Q) 

( 1 + cos j) = '" (C. 1 0) 

. = _ K a- ~ x2 [( 1 - C)] 
0 0 0 (1 + C) (C.12) 

(C.13) 

where r e = 1 for this implementation. 

The GTDS retrograde factor, I, was equal to one for this analysis. 
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Appendix D 

Finite Differencing 

A single-sided finite differencing technique was used in this 

research to obtain approximations to the partial derivatives of 

various quantities. These partial derivatives were then compared to 

the state transition matrix generated by each NORAD GP theory. This 

appendix develops this differencing technique and points out some of 

it's limitations. 

One way to develop this single-sided finite differencing 

technique lS to start with a Taylor series expansion of a scalar 

function of x, fex): 

+ ... (D.I) 

Now, simply subtract f (x 0) from the right hand side of equation 

(D.I) which yields: 

Finally, divide by ill< which yields the following single-sided finite 

differencing approximation [61]: 
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(D.3) 
x=x o 

This approximation lS essentially equivalent to Euler's method, 

which is also known as the tangent method, whereby the derivative 

at a point (x n' Y n) is approximated with the following difference 

quotient: 

(Y n+1 - Yn) 
h 

(DA) 

Where h lS the length of a subinterval on an interval [a,b] [91]. 

Dahlquist and Bjorck [91] point out that a weakness of the Euler 

method is that the step length or Slze must be chosen quite small in 

order to maintain acceptable accuracy. 

Green (1979) explains that there are two sources of error for 

the single-sided finite differencing approach: neglect of higher order 

terms and roundoff. The error due to the neglect of higher order 

terms will be less than or equal to the following: 

Error { L\x [ if (x) ffi 
~-2max 2 

dX (D.5) 

Roundoff errors are due to the finite word length inherent in the 

computer being used. Varying the stepsize, (L\x), can significantly 

affect the roundoff error. Green (1979) states that with double 
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~-

precision on the Amdahl 470 V6 (sixteen digits), he found that good 

results were obtained when: 

- 5 
(L\)() = 1x 10 (x) 

With single precision (eight digits), a good stepsize was [61]: 

(L\)() = 1x 10- 3 (x) 

-4 
A stepsize of 2 x 10 was used in the double preCISlon finite 

difference analysis of Section 4.4.1. 
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Appendix E 

Review of the Generalized Method of Averaging 

The objective of the generalized method of averaging is to 

eliminate fast variables, or high frequency components, from 

differential equations. One reason for applying this technique is to 

eliminate terms that do not make important contributions to the 

solution, but that can cause difficulties in obtaining a numericalor 

analytical solution [46]. This idea is not new in the study of 

celestial mechanics. Although the history of this method appears to 

be somewhat controversial, this appendix will attempt to present an 

objective chronology. 

This development begins with Euler's (1748) investigation of 

the mutual perturbations of Jupiter and Saturn. This study led to the 

first analytical development of the variation of parameters. Euler's 

treatment was not totally general since he did not consider the 

orbital elements as being simultaneously variable. Lagrange 

improved Euler's analysis, and by 1782 he had completely developed 

the variation of parameters yielding the Lagrange planetary 

equations. It is of further interest to note that Lagrange's 

variational equations were derived for the special case in which the 

disturbing acceleration was represented as the gradient of the 

disturbing function. Gauss pointed out that this is not completely 

necessary. Accordingly, he derived another set of variational 

equations which are appropriate for various component resolutions 
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of the disturbing acceleration vector [86]. Nonetheless, it is perhaps 

from a further analysis of Lagrange's planetary equations that the 

method of averaging, as applied to celestial mechanics, has its 

origins. McClain (1977) points out, given conservative perturbing 

forces, that the osculating element rates can be represented in 

terms of the partial derivatives of a disturbing function. For 

Lagrange's case, this function is simply the negative of the 

disturbing geopotential function. Furthermore, to obtain a 

formulation dependent only on the elements, the disturbing function 

can be developed in terms of the elements through a formal Fourier 

series expansion. (See Battin, (1987); and McClain (1977) for 

details.) The significance of this expansion is that it permits 

isolation of specific frequencies in the motion by inspection [48]. 

The "averaging," or removal of periodic terms, begins when one 

integrates this Fourier se ries expansion, either analytically or 

numerically. Danby (1964) develops Gauss' analytic method for the 

calculation of secular perturbations. The secular terms found in the 

first order solution to Lagrange's planetary equations arise from the 

constant term in the disturbing function when this function is 

expanded in a Fourier series in the mean anomalies of the disturbed 

and disturbing planets. Specifically, this term is found from the 

following integral: 

21t 21t 

~ J JRdMdM' 
41t 0 0 

(E.1 ) 

Where the quantity R is gravitational potential 
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since all but the constant term vanishes [92]. Thus, it appears that 

Gauss' analytic method is the first application of the method of 

averaging to celestial mechanics. 

Ensuing studies begin with Delaunay's (c. 1860) study of the 

moon's motion. He uses successive canonical transformations to 

solve the equations of motion. Furthermore, Delaunay recognized 

that the major difficulty in the avoidance of unbounded terms in the 

se ries solution of the equations of motion was the choice of a 

reference frequency, (0. The development of Delaunay's method of 

successive canonical transformations to a method utilizing a 

generating function, S, was first forseen by Tisserand in 1868 [47]. 

The next series of developments center on the work of 

Lindstedt, Poincare', and Von Zeipel. Their work begins with 

Lindstedt's (1882) problem of obtaining aseries solution, free from 

secular and/or mixed secular terms, of the following equation: 

x + (O~ x = cf (x, x, t) (E.2) 

where 0 < E < 1 is a small parameter. 

Lindstedt notes the possibility of obtaining a solution to the 

following equations: 

x = xo(t) + EX1 (t) + E2 X 2 (t) + 

x = xo(t) + EX 1 (t) + E2 X2 (t) + 
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with x j (t) ,and X j (t) as bounded functions for all t ER, was found 

to depend essentiallyon the nature of fand its derivatives up to 

some order. Furthermore, he introduced the following reference 

solution (x o (t), x 0 (t)): 

X o = a cos (rot + cr) 

x 0 = - aro sin (wt + 0) (E.4) 

where 00 is apriori unknown but, by assumption, developable in a 

power series: 

where ro 1, ro 2 , ..• are constants depending on Wo a and f. In 1886, , 

Poincare' reduced Lindstedt's work to a systematic averaging 

procedure for Hamiltonian, but not necessarily conservative, 

systems. Additionally, Poincare' studied related questions, 

including the problem of resonance in the non linear sense and the 

overall divergence of Linstedt's series. In 1911, Von Zeipel 

generalized the ideas of Poincare' in his analysis of the motion of 

asteroids [47]. This concludes the classical review of averaging in 

celestial mechanics. 

Since 1929, similar problems and questions arose in nonlinear 

circuit theory leading to the averaging methods of Krylov and 

Bogoliubov (1937) [93]. These studies were made available, in 1942, 

to the western mathematicians thanks to the translation efforts of 
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Lefshetz [47]. Bogoliubov and Mitropolsky (1961), develop both the 

earlier methods of Krylov and Bogoliubov, and a specific application 

of those methods. Respectively, the first development begins with 

the problem of having secular terms on the right hand side of a 

series solution to the equations of motion. They further point out 

that, as a rule, power series are divergent [93]. As I have just 

described, both of these problems were also investigated by 

Poincare' in his studies in celestial mechanics. Nonetheless, 

Bogoliubov and Mitropolsky note that the approximate fomulae 

obtained by taking a limited number of terms of apower series, m = 

1, 2, 3 ... are found to be extremely suitable for practical 

calculations. In fact, these se ries are asymptotic, since the mth 

th 
approximation is proportional to the (m +1 ) power of the small 

parameter, e [93]. A very similar development is presented by 

Nayfeh (1973), whereby he truncates aseries, which diverges for all 

values of x, after n terms, specifically: 

1 1 2 ! 3! 
y=x+-+-+-+···+ 

x2 x3 x4 

(n-1)! 
xn 

+ ... (E.6) 

He then investigates whether or not this series is of any value in 

finding a particular solution to a given equation. Nayfeh finds, that 

for a fixed value of n, the error committed in truncating the series 
th 

is numerically less than the first neglected term, i. e., the (n +1) 

term. Although the series does diverge, for a fixed n, the first n 
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terms in the se ries can represent y with an error which can be made 

arbitrarily small by taking ~I sufficiently large. In fact, such a 

series is called an asymptotic series of the Poincare' type (Poincare' 

1892) and is denoted by [94]: 

~ (n - 1) ! 
y .... ki xn 

n = 1 
as ~I ~ 00 (E.7) 

In essence, Nayfeh (Poincare') establishes abound on the error due to 

truncation of the power series. With this idea in mind, Bogolbiubov 

and Mitropolsky point out that series convergence is not the critical 

issue and proceed to develop Krylov's and Boglobiubov's asymptotic 

approximations for a differential equation of the form studied by 

Lindstedt and Poincare', specifically: 

(E.8) 

where e is a small positive parameter. 

The main difference in the corresponding analyses is that Lindstedt 

and Poincare' were modeling conservative dynamical systems, 

whereas Krylov and Bogliubov were considering non-conservative 

systems, containing sources and sinks of energy. Krylov and 

Boglobiubov's development continues by seeking a general solution in 

the following form: 
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where '" = (rot + e ) 

Also, where u1 (a, "'), u2 (a, "'), ... are 21t periodic functions of the 

angle '" and the quantities a and 'l' are functions of time defined by , 

the following differential equations: 

(E.10) 

Thus, the original second-order equation (E.8), has been replaced by 

two first order differential equations (E.10). Therefore, Krylov and 

Bogoliubov conclude that the practical applicability of the method is 

not determined by the convergence of the series within equations 

(E.9) nor (E.10) as these series approach infinity, but rather by their 

asymptotic properties for a given fixed value of terms when E ~ 0 

[93]. 

Bogoliubov and Mitropolsky also derive the generalized method 

of averaging in the case of a system with rapidly rotating phase. 

They begin with a dynamical system whose state is characterized by 

the rapidly rotating phase, or angular variable, Cl and the r variables 

x1 , x 2 ' ._x r. This system is represented by the following equations: 
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dx k 

dt =Xk (~, Xl' ... Xr ) (k =1, 2, ... r) 

~~ = Aco (X1'···X r ) + A (al' Xl' ... X r ) 
(E.11) 

Where A is a large parameter, and Aco is the frequency of the 

rotation a. 
1 Also, Xk and Aare 21t periodic functions of a; and E = ACO . 

At this point, the derivation shows how to eliminate a from 

the right hand side of equations (E.11) by averaging. First, they 

define a near identity transformation, or change of variables: 

- ~ 1 J:(n) (- - -) (k 1 2 ) x k = Xk+~X-~k a,x l,···x r =, , ... r 
n= 1 n 

(E.12) 

Thus, equations (E.10) reduce to: 

(E.13) 

such that the coefficients in equation (E.13) do not depend on the 

angular variable, Ci [93]. Another benefit of this procedure, is that 

the functions ~ k and Un need not be restricted to scalar functions 

[94]. 
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Following the work of Krylov and Bogoliubov, there have been 

numerous applieations that use the method of averaging in both 

eelestial meehanies and nonlinear eireuit theory. will eonelude 

this review of the generalized method of averaging with a most 

interesting mathematieal analysis prepared for NASA, by Analytieal 

and Computational Mathematies, Ine., (Nov 1977). This report states 

that the generalized method of averaging is based upon the following 

Main Theorem of Averaging, for the periodie ease, (See Verhulst 

1976 [95]). 

Consider the the initial value problem: 

dx ... dt = cf (x, 1, E) (E.14) 

with t E [0, 00] , XE G 

where G is an open bounded set in Rn, 

and the following eonditions are satisfied [46]* : 

... 
(1) f is defined in a eonneeted set G; 

(2) r is eontinuous and uniformally bounded in G; 

f... ~ 

(3) is Lipshitz**-eontinuous with respeet to x in G; 

**Note: (A Lipshitz eondition is refereneed to the' Uniqueness 

Theorem, i.e. : 

* Note: The first three conditions ensure that the solution to equation (E.13) exists and 
is unique. 
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If (x,y) and (g;) are continuous for all (x,y) in a rectangle R in 

the Euclidean Plane, and bounded by: 

(a) ~I:S;K for all (x,y) in R, 

then the initial value problem, equation (E.14), has one solution, y(x), 

which is defined at least for all x in the interval Ix - x 01 < <l. Where 

<l is the smaller of the two numbers (a) and (b)/K. Furthermore, (a) 

and (b) are sufficient conditions rather than necessary, and can be 

lessened. From the mean value theorem of differential calculus, 

(E.15) 

where (x, Yl) and (x, y 2) are assumed to be in R, 

and Y' is a suitable value between Yl and Y 2. 

From this fact, and condition (b), it follows that equation 

(E.16): 

(E.16) 

can replace condition (b) and is known as a Lipshitz condition. The 

important point to gain from this immediate analysis is that the 

continuity of f(x,y) is not enough to guarantee the uniqueness of the 

solution [96].) 
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(4) lim r (x, t, E) = f (x, t, 0) 
e-+O 

exists uniformly in G; 

... 
(5) f has a bounded derivative of E in G; 

... 
(6) f is periodic in t with period T. 

.-
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Appendix F 

USER GUIOE OATA 

This appendix provides user guide data for the implementation 

of the NORAO GP theories in GTOS. Additional options have been 

defined for several previously existing GTOS keyword cards 

(ELEMENT1, ELEMENT2, ORBTYPE, OUTPUT, POTFIELO, STATEPAR and 

ORAGPAR) and four new GTOS keyword cards (ELEMENT3, ELEMENT4, 

ELEMENTS, ELEMENT6) have been constructed. The following keyword 

descriptions describe the card usage for the NORAO GP theories. 

None of the modifications are intended to delete current 

capabilities. Therefore, the R & 0 GTOS User Guide should be 

consulted in conjunction with the card descriptions in this appendix. 

Finally, two sam pie input decks are provided. The first sam pie deck 

is for a HANOE differential correction run employing the seven 

parameter input option. The second sampie deck is for a OP4 

differential correction run processing tracking data for the Telesat 

02 spacecraft. 
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ELEMENT1 

ELEMENT1 
(Mandatory) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: EPHEM, oe 

• Oetailed Format: 

Columns Format 
1 - 8 A8 

9-11 13 

1 2-14 13 

15-1 7 13 

18-38 G21.14 

39-59 G21.14 

60-80 G21.14 

Oescription 
ELEMENT1 - KEYWORO to set the first three 
components of the initial state vector and to 
identify the coordinate system and reference 
central body of the initial state 

Input coordinate system orientation: 
=8, NORAO true equator, mean equinox of 

epoch 

Input coordinate system type: 
=10, SGP elements (GTOS format) 
=11, GP4/0P4 elements (GTOS format) 
=12, HANOE elements (GTOS format) 
= 13, SAL Telements (GTOS format) 
=14, SGP elements (SPAOOe format) 
=15, GP4/0P4 elements (SPAOOe format) 
=16, HANOE elements (SPAOOe format) 
=17, SALT elements (SPAOOe format) 
=18, SGP elements (from the NORAO 

Historical Oata System) (SPAOOC 
format) 

Input element set reference central body: 
=1, Earth 

GTOS Format SPAooe Format 

semimajor axis (km) mean motion (revs/day) 

eccentricity eccentricity 

inclination (deg) inclination (deg) 
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ELEMENT2 

ELEMENT2 
(Mandatory) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: EPHEM, OC 

• Oetailed Format: 

Columns Format 

1 - 8 A8 

9 -1 7 313 

18-38 G21.14 

39-59 G21.14 

60-80 G21.14 

Oescriptio n 

ELEMENT2 - KEYWORO to set the second three 
components of the initial state 

Blank 

GIPS and SPAPOC Formats 

longitude of ascending node (deg) 

argument of perigee (deg) 

Mean anomaly (deg) 

295 



ELEMENT3 

ELEMENT3 
(Mandatory) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: EPHEM, OC 

• Oetailed Format: 

Columns Format 

1 - 8 A8 

9-17 313 

18-38 G21.14 

39-59 G21.14 

60-80 G21.14 

Oescription 

ELEMENT3 - KEYWORO to set the NORAO GP 
theory drag parameters 

Blank 

GP Theory Application 

(SGP, HANDE1) 

no / 6 , (rev/day3) (SGP, HANDE) 

B* , (Earth Radir 1) (GP4) 

B, (m2/kg) (HANDE) 

1 For the HANOE theory, the ri o / 2 and no / 6 parameters are 
required only if the 18 parameter input option is being employed. 
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ELEMENT4 

ELEMENT4 
(Mandatory for HANDE 18 parameter input) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: EPHEM, DC 

• Detailed Format: 

Columns Format 

1 -8 A8 

9 -1 7 313 

18-38 G21.14 

39-59 G21.14 

60-80 G21.14 

Description 

ELEMENT4 - KEYWORD to set the the first 
group of extra time derivatives required for 
the HANDE theory when the 18 parameter 
input option is being employed 

Blank 

3 3 4 
(d n / dt ) 0/ 24 , (rev/day ) 
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ELEMENTS 

ELEMENTS 
(Mandatory for HANOE 18 parameter input) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: EPHEM, OC 

• Oetailed Format: 

Columns Format 

1 - 8 A8 

9-17 313 

18-38 G21.14 

39-S9 G21.14 

60-80 G21.14 

Oescription 

ELEMENTS - KEYWORO to set the second group 
of extra time derivatives required for the 
HANOE theory when the 18 parameter input 
option is being employed 

Blank 

(di / dt) 0 ' (rev/day) 
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ELEMENT6 

ELEMENT6 
(Mandatory for HANDE 18 parameter input) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: EPHEM, DC 

• Detailed Format: 

Columns Format Description 

1 - 8 A8 ELEMENT6 - KEYWORD to set the third group of 
extra time derivatives required for the HANDE 
theory when the 18 parameter input option is 
being employed 

9-17 313 Blank 

18-38 G21.14 (dQ / dt) 0 ' (rev/day) 

39-59 G21.14 (dm / dt) 0 ' (rev/day) 

60-80 G21.14 (dM/ dt) 0 ' (rev/day) 
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ORBTYPE 

ORBTYPE 
(Mandatory) 

• Card format: (A8, 313, 3G21.14) 

• Applieable programs: EPHEM, OC 

• Oetailed Format: 

Columns Format 

1 - 8 A8 

9 -1 1 13 

12-14 13 

15-17 13 

18-38 G21.14 

Oeseription 

ORBTYPE - KEYWORO to seleet the orbit 
generator type 

NORAO Orbit Generator Type: 

=13, SGP 
=14, GP4/0P4 (automatie seleetion) 
=15, OP4 
=16, HANDE (7 parameter input) 
=17, HANDE (18 parameter input) 
=18, SALT 

Osculating or Mean Output: 

=1, osculating 
=2, mean (not operational) 

Integration Coordinate System: 

=8, NORAO true equator and mean equinox 
of epoch 

Computation method for Minutes since Jan 
0.0, 1970 (SPAOOC Reference Time) 

=1, A.1 - UTC corrections are considered 
(uses GTDS TZERO parameter) 

=2, Based solelyon Julian Date 
(eorresponds to FACC 'zero time 
constants' option) 
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OUTPUT 

OUTPUT 
(Mandatory) 

• Card format: (A8, 313, 3G21.14) 

• Applieable programs: EPHEM 

• Detailed Format: 

Columns Format 

1-8 A8 

9 -1 1 13 

12-1 4 13 

15-1 7 13 

18-38 G21.14 

Deseription 

OUTPUT - KEYWORD to seleet the orbit 
generator printer output 

Output Coordinate System Orientation: 

=1, mean Earth equator and equinox of 
1950.0 

=2, 
=3, 

=4, 
=5, 
=6, 

=7, 
=8, 

true of referenee (inertial) 
true of referenee or date (body­
fixed) 
mean eeliptie and equinox of 1950.0 
true of date, ecliptie and equinox 
NORAD true equator and mean equinox 
of output date 
not used 
NORAD true equator and mean equinox 
of epoeh 

Output Referenee System: 

=2, Cartesian, Keplerian, and spherieal 
(default) 

Output Referenee Body: 

=1, Earth 

Year, month, day of end of print are (yymmdd) 
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OUTPUT (eont'd) 

39-59 G21.14 

60-80 G21.14 

OUTPUT 
(Mandatory) 

Hours, minutes, seeonds of end of print are 
(hhmmss.ssss) 

Output print interval (seeonds) 
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POTFIELO 

POTFIELO 
(OGOPT) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: OC, EPHEM 

• Oetailed Format: 

Columns Format Oescription 

1 - 8 A8 POTFIELO - KEYWORO to indicate if retrieval 
of potential field data is required 

9 -11 13 Body fo r wh ich field data is to be retrieved: 

=1, Earth 

12-1 4 13 Potential field model number 

=7, WGS-722 

Note: This setting is mandatory for NORAO GP 
theory runs until subroutine INTNCO is 
completed. 

15-1 7 13 not used 
18-38 G21.14 not used 
39-59 G21.14 not used 
60-80 G21.14 not used 

2 The GTOS data set 'NEW.EARTHFLO.OATA' must be attached to 
FT08 via JCL. 

303 

-
~ 



STATEPAR 

STATEPAR 
(OGOPT) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: OC, EPHEM 

• Oetailed Format: 

Columns Format 

1 - 8 A8 

9 -11 

12-14 
1 5-1 7 
18-38 
39-59 
60-80 

13 

13 
13 
G21.14 
G21.14 
G21.14 

Oescriptio n 

STATEPAR - KEYWORO to set the state vector 
partial derivatives switch to compute state 
partial derivatives in an EPHEM Program run, 
or to indicate state solve-for parameters in a 
OC Program run 

State solve-for parameter component type: 

=3, mean equinoctial elements 
(a,h,k,p,q, )..) 

Note - This value applies to both the 
Semianalytical Satellite 
Theory and the NORAO GP 
theory implementations in 
GTOS 

not used for NORAO GP theories 
not used for NORAO GP theories 
not used for NORAO GP theories 
not used for NORAO GP theories 
not used for NORAO GP theories 
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ORAGPAR 

o RAG PAR 
(OGOPT) 

• Card format: (A8, 313, 3G21.14) 

• Applicable programs: OC 

• Oetailed Format: 

Columns Format 

1 - 8 A8 

9-11 13 

12-14 
1 5-1 7 
18-38 
39-59 

60-80 

13 
13 
G21.14 
G21.14 

G21.14 

Oescription 

ORAGPAR - KEYWORO to update drag solve-for 
parameters 

Orag options: 

=0, no drag solve-for requested 
=6, solve for the appropriate drag 

parameter in a NORAO GP theory OC 

- no I 2 in SGP 
- B* in GP4/0P4 

B in HANOE/SAL T 

not used for NORAO GP theories 
not used for NORAO GP theories 
not used for NORAO GP theories 
not used for NORAO GP theories 

Apriori standard deviation of the drag solve­
for parameter (optional) 

- cr no I 2 in SG P 

- cr B* in GP4/0P4 

- cr 8 in HANOE/SAL T 
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SampIe Data Card Deck For RANDE Differential Correction Run 

CONTf*tl ae SV10299 770830 ","-

ELEMENTl 8 12 6635.805 .0098 72.97 
ELEMENT2 118. 12 55.73 164.08 
ELEMENT3 0.0 0.0 1.070-3 
EPOCH 770902 000000 
OBSINPUT 5 770902 000000 770905 000000 
ORBTYPE 16 8 1 
DMOPT 
/PARQ 100396 3 346.4107137 484329.0236 2620600.3352 
/CBOF 100393 3 86.77134266 524414.1586 1740527.3512 
/ASCQ 100354 3 51.74810742 - 75424.0547 3453550.4294 
/EGLQ 100399 3 30.41996473 303420.7437 2734706.5524 
/NAVQ 100745 3 325.6775670 333252. 1124 2611349.55CO 
/CLEF 100349 3 208.9523966 641728.1775 2104825.2759 
/CLET 100359 3 208.9523966 641728.1775 2104825.2759 
/FYLQ 100341 3 294.8848220 542207.6106 3591953.1280 
/FYLF 100342 3 296.4543978 542201.7699 3591959.4260 
/FYLT 100343 3 293.1495292 542157.0336 3592003.7670 
/OYBF 100337 3 886.2302620 375418.7758 395935.4601 
/OYBT 100401 3 886.2302620 375418.7758 395935.4601 ,~ 

/THUF 100348 3 389.1741628 763404. 1687 2914256.3160 
/ANTQ 100363 3 0.4623641 170836.974048 2981226.378593 
OBSOEV 9 300 
OBSOEV 27 30 
OBSDEV 4 72 
OBSOEV 5 72 
END 
OCOPT 
/PARQ 001004005 48. 54. 46.8 
/PARQ 009 100. 
/CBOF 001004005 34. 93.6 57.6 
/CBOF 009 200. 
/ASCQ 001004005 77. 90. 118.8 
/ASCQ 009 1200. 
/EGLQ 001004005 67. 61.2 54. 
/NAVQ 001004005 1979. 64.8 122.4 
/CLEF 001004005 3044. 190.8 140.4 
/CLEF 009 600. 
/CLET 001004005 33. 111. 6 118.8 
/CLET 009 700. 
/FYLQ 001004005 1460. 144. 57.6 
/FYLQ 009 200. 
/FYLF 001004005 2764. 104.4 86.4 
/FYLF 009 200. 
/FYLT 001004005 1174. 104.4 115.2 
/FYLT 009 100. 
/OYBF 001004005 59. 158.4 237.6 
/OYBF 009 400. 
/OYBT 001004005 54. 219.6 144. 
/DYBT 009 400. 
/THUF 001004005 879. 97.2 165.6 
/THUF 009 200. 
/ANTQ 001004005 27. 25.2 21.6 
/ANTQ 009 100. 
PRINTOUT 1 4 11. 
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Sam pie Data Card Deck For HANDE Differential Correction Run 
(Cont'd) 

CONVERG 12 1. D- 3 1.0 
ELLMOOEL 1 6378.14 298.25 
END 
OGOPT 
POTFIELD 1 7 
ORAGPAR 6 
STATEPAR 3 
STATETAB 1 2 3 4 5 6 
END 
FIN 
CONTROL EPHEM OUTPUT SV10299 770830 
OUTPUT 1 2 1 770905 0.0 900. 
ORBTYPE 16 1 8 1 
OGOPT 
DRAGPAR 0 
POTFIELO 1 7 
OUTOPT 1 770902000000. 770905000000. 900. 
END 
FIN 
CONTROL COMPARE SV10299 770830 
COMPOPT 
CMPEPHEM 1102102 770902000000. 770904000000. 15 
CMPPLOT 3 2.0 
HISTPLOT 1102102 770902000000. 770904000000. 900. 
END 
FIN 
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SampIe Data Card Deck For DP4 Differential Correction Run 

CONTROL oc TELESAT 850101 
ELEMENT 1 8 11 42164.464 0.0012822 1.9714 
ELEMENT2 277.7290 200.7923 158.4946 
ELEMENT3 0.0 0.0 0.0 
EPOCH 850405 125928.623 
OBSINPUT 5 850405 130000 850501 000000 
ORBTYPE 15 8 1 
DMOPT 
IEGLQ 100399 3 36.0 303420.6760 2734706.2880 
IPRKQ 100404 3 889.974 375418.7730 395935.4700 
IALTQ 100334 3 63.380 92343.3990 1672844.8831 
IMILQ 100369 3 123.100 423702.6530 2883032.2178 
ITTAF 100602 3 260.714 441022.54384 2790348.05586 
IMAGC 100231 13 3058.680 204228.8380 2034431.4260 
IMBGC 100232 13 3058.670 204228.8420 2034432.5420 
IMCGC 100233 13 3058.700 204230.5690 2034432.6400 
IKAGC 100221 13 784.200 354438.5780 1283628.3260 
IKBGC 100222 13 784.210 354438.5810 1283630.0780 
IKCGC 100223 13 784.230 354437.7860 1283629.8310 
ICAGC 100211 13 1510.210 334902.0474 2532022.9049 
ICBGC 100212 13 1510.190 334902.0500 2532024.6167 
ICCGC 100213 13 1510.200 334901.2554 2532024.4064 
ISTMC 100027 13 74.1 465357.948 2944723.28 
END 
DCOPT 
EDIT 2 3.0 
TRACKELV 3 13 5. 5. 
IEGLQ 001004005 67. 61.2 54. 
IPRKQ 001004005 49.5 66.3 125.5 
IPRKQ 009 34.9 
IALTQ 001004005 17.0 30. 1 34.9 
IALTQ 009 5.3 
/MILQ 001004005 2. 1 13.5 14.8 
IMILQ 009 1. 
ITTAF 001004005 5. 29. 29. 
IMAGC 006007 16. 16. 
IMBGC 006007 14.8 14.8 
IMCGC 006007 16.3 16.3 
IKAGC 006007 16.2 16.2 
IKBGC 006007 16.7 16.7 
IKCGC 006007 38. 38. 
ICAGC 006007 17.7 17.7 
ICBGC 006007 17.1 17.1 
ICCGC 006007 18.1 18.1 
ISTMC 006007 144. 144. 
PRINTOUT 1 4 1. 
CONVERG 20 1.0-3 1.0 
ELLMODEL 1 6378.135 298.26 
OBSCORR 1 1 0 2222. 
ITTAF 600002004 2 2 
/TTAF 500004001 0.0 
ITTAF 500005001 0.0 
PASSTIME 1 10.016 
END 
OGOPT 
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SampIe Data Card Deck For DP4 Differential Correction Run (Cont'd) 

... '--

POTFIELD 1 7 
STATEPAR 3 
STATETAB 1 2 3 4 5 6 
END 
FIN 
CONTROL EPHEM OUTPUT TELESAT 850101 
OUTPUT 1 2 1 850501 . 125928.623 3600. 
ORBTYPE 15 1 8 1 
OGOPT 
POTF I ELD 7 
OUTOPT 850405130000. 850501130000. 1800. 
END 
FIN 
CONTROL COMPARE TELESAT 850101 
COMPOPT 
CMPEPHEM 1102102 850405130000. 850501000000. 720. 
CMPPLOT 3 2.0 
HISTPLOT 1102102 850405130000. 850501000000. 43200. 
END 
FIN 
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